

IHP CONFIGURABLE INTELLIGENT HIGH POWER SYSTEM

Advanced EnergyのArtesyn iHPは、 広範な医療及び産業アプリケーション 対象のコンフィギュラブルインテリジェント高出力システムです。

概要

iHP Configurable Intelligent High Power Systemは、医療・産業用アプリケーション向けに設計されており、プログラム可能な電圧源または電流源で、精度、分解能、安定性を実現しています。 3kW単位で最大24kWまで提供し、広域な電圧・電流範囲に対応する多様なプラグインモジュールの使用で最大8つの出力に構成することが出来ます。

安全性規格承認はAdvanced Energyが取得しているため、医療機器への絶縁トランスは不要です。さらにiHPシステムは産業用安全規格承認も取得しており、半導体プロセス装置対象の SEMI F47 Voltage Sag Tolerance規格に適合しています。

このiHPシステムは、開発企業のシステムへのアナログまたは デジタルインターフェースの搭載が可能です。標準通信プロト コルを サポートし、グラフィカル・ユーザー・インターフェー ス(GUI)で簡単に設定できます。

特長

- ~24kW
- 0~1000V
- 最大1600A
- 最大8出力
- 180~528VAC単相又は3相の多用途な入力範囲
- あらゆる高電力アプリケーションに対応可
- ユーザー設定可能な入力
- GUIを介してプログラム可能な負荷への最適化
- 医療規格完全承認率90%以上のアクティブPFC
- 高効率 (標準92%)

アプリケーション

- 医療用
- LED照明
- 化学プロセス
- 高出力レーザ
- ■ラボ用電源
- SPE
- 電気メッキとエッチング

CONFIGURABLE INTELLIGENT HIGH POWER SYSTEM

パワフルな可能性

Artesyn iHPシリーズは、医療用・産業用安全規格承認を取得した唯一のconfigurable high power systemで、革新的な制御と柔軟性を実現しています。iHPシステムは、パワーケースと最大8基の出力モジュールで構成されており、様々なアプリケーションニーズに適合するよう設計されています。以下にアプリケーションの一部をご紹介します。

- **医療用** 絶縁トランスが不要で、マルチ出力のモジュール構造が 単体ユニットとしてあらゆるシステムに給電します。
- LED照明/植物育成用 バルク高電圧電流源は個別のLEDアレイド ライバーを不要にすることで、導入・運用コストを削減します。
- **高出力レーザ** 標準モジュールは、レーザドライバに入力する広範囲のバルク電力を供給します。

- **化学プロセス/水処理** コンパクトサイズの複数ラックを並列し、 メガワットまでの大規模設備に対応します。複雑なプロセスフロ ーの実行はGUIでプログラムすることで可能になります。
- **ラボ用電源** リモートコントロールパネルへのワイヤレス通信が 内蔵された開発中の高精度モジュールは、電圧源と電流源の精度 の高いコントロールを少ないノイズで実現しています。
- 半導体プロセス機器 SEMI F47規格への適合とEtherCAT通信への セットアップを予定しています。
- ■電気メッキとエッチング 開発中のモジュールは、ハイレベルな GUIと連動して正確な処理要件に適応する立ち上がり・立ち下が り時間のプログラム性を向上させます。

パワーラック

パワーラックにはEMCフィルタリングとデジタルフロントエンドカ 率改善(PFC)回路、入出力コネクタ、関連ハードウェアが格納されて います。さらにiHP電源システムは、広範囲の負荷に対応する効率 的なPFC及び低い全高調波歪み(THD)を備えています。多相連続モード・ブーストPFCアーキテクチャを採用しているため、リップル電流のキャンセルでEMI低減と電解コンデンサの寿命延長を実現して います。ユーザーはiHPシステムを、単相又は3相入力に構成できます。ラックに装備された通信ボードは、多様な絶縁型ユーザーイン ターフェースを備え、またインテリジェントPFCとモジュール間の 内部通信も扱えます。

制御と通信機能

Artesynはアナログ及びデジタルインターフェースに対して、 CANbus・イーサネット・RS485を含む多様なオプションを提供して います。

デジタル制御により、Artesynのハイレベルな PowerPro configurable GUIの使用が可能になり、単体または複数iHPシステム の全機能を制御及びモニターできます。このPowerPro GUIはクラウドに在って特定のプラットフォームに偏っておらず、インターネット接続しているあらゆるデバイスで動作が可能です。またPowerPro GUIはグラフィックなスクリプト作成機能を備えており、ユーザーは 独自のプロセス制御ルーチンを書き込むことが可能です。

iHPシリーズは平均電流モード(ACM)制御を採用しています。これは高速過渡応答性や出力電圧精度が要求されるピーク電流モード制御に比べて、明確な利点があります。ACM制御は広い負荷範囲にわたって優れた安定性があり、それは高電流ループゲインによりコンバータが非連続モードから連続モードに移行する場合でも同じです。これは出力インダクタ電流を直接制御し、優れたラインと負荷レギュレーションを提供します。

ダッシュボード例です。 ユ ーザーはウィジェットをド ラッグ&ドロップして、デ バイス、スクリプトタイマ ー、変数に割り当て設定す ることができます。

PowerPro GUIはパワフル なスクリプト作成機能を 備えており、ユーザーは 独自のプロセス制御ルー チンを書き込むことが可 能です。

出力モジュール

出力は電圧源・電流源で設定可能なため、Artesynが提供する標準モ ジュールの製品範囲から、独自のアプリケーション要件に合わせて カスタマイズができます。これらのモジュールは高精度の電圧と電 流を共有しながら、直列・並列接続に加え、電圧と電流のランプ時 間、及びループ補償もプログラムが可能です。

出力 ― 電流源モード モジュール

電流源 — 抵抗・誘導負荷にプログラム可能な負荷補償有り;容量性負荷アプリケーション;及びLED駆動アプリケーション									
モジュールコード	SL	SQ	ST	SW	S8	S1	SA	S2	
公称出力(V)	12	24	32	48	80	125	200	250	
設定範囲(A)	0.0~200 A	0.0~120 A	0.0~90 A	0.0~62.5 A	0.0~37.5 A	0.0~24 A	0.0~15 A	0.0~12 A	
RMSリップル (mA)	200	120	90	62.5	37.5	24	15	12	
ラインレギュレーション (mA)	200	120	90	125	93.75	48	50	24	
負荷レギュレーション (mA)	800	480	375	250	150	96	56	48	
ピーク値リップル (mA)	N/A								
ドリフト(温度安定性)	30分のウォームアップ後、一定の入力、負荷、温度での8時間の変化 ±0.05% of I _{out} Rated								
温度係数 (PPM/°C)	SL, SQ = 300 PPM; その他のモジュールは全て200 PPM ラックレベル温度係数 [温度係数 (モジュールレベル)] + [4500 PPM of lout-max]								
Pgm 精度 (A)	0.7% デジタル、定格出力最大の 1.3% アナログ								
Pgm 分解能 (mA)	79.2	26.4		13.2	10	5.2	2.6	2.6	
Meas 精度	最大定格出力の0.7% + 0.7%								
Meas 分解能	79.2	26.4		13.2	10	5.2	2.6	2.6	
過渡応答	7.5 mSec で出力電流変化0-63%、剰余値1%、回復時間35 mSec								
電流検出法	内部シャント / 外部シャント								
電流源 — 抵抗・誘導負荷にプログラム可能な負荷補償有り;容量性負荷アプリケーション;及びLED駆動アプリケーション									
モジュールコード		TW	TW			T3			
公称出力(V)		50	50			300			
設定範囲(A)		0~270	0~270			0~50			
RMSリップル (mA)		270	270			50			
ラインレギュレーション (mA)		270	270			100			
負荷レギュレーション (mA)		1200	1200			200			
Pgm 分解能 (mA)		20				ГВА			
Meas 分解能 (mA)		TBA							
Pgm 精度 (A)			デジタル: 定格出力最大の0.7% /アナログ: 定格出力最大の1.3% (1% ~100% O/P 電流調整可)						
Meas 精度		最大定格出力の0.7% + 0.7%							
ドリフト(温度安定性)		一定の入力、負荷での8時間の変化±0.05% of lout max							
温度係数 – モジュールレベル(P	°C) 300	300				300			
温度係数 – ラックレベル		[温度係数	[温度係数(モジュールレベル)] + [4500ppm of lout-max]						
電流オーバーシュート- アンダー	lout-maxの	lout-maxの±5% (過渡状態についてはセクション5.4.2参照)							
過渡応答時間	回復時間 3	回復時間 35mS (過渡状態についてはセクション5.4.2参照)							
電流検出法	内部シャン	内部シャント							

グローバルな連絡先については advancedenergy.comをご覧下さい

powersales@aei.com +1 888 412 7832

ADVANCED ENERGYについて

Advanced Energy (AE)は30年以上もの間、世界中の顧客企業の電源の最適化を実現してきました。当社はミッションクリティカルなアプリケーションとプロセスを対象に、先進のエンジニアリングによる高精度電力変換、計測および制御ソリューションを設計・製造しています。

当社の製品は、半導体製造装置、産業用、製造用、通信、データセンターコンピューティング、医療用など広範な業界の複雑なアプリケーションにおけるイノベーションを、顧客企業に可能にしています。深いアプリケーションノウハウと迅速対応のサービス/サポートを世界中に有する当社は、急速な技術進歩、顧客の成長推進、未来の電力革新に対応すべく、数々の協働的パートナーシップを確立しています。

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. © 2021 Advanced Energy Industries, Inc. All rights reserved. PMBus® is a trademark of SMIF, Inc. Advanced Energy® and AE® are U.S. trademarks of Advanced Energy Industries, Inc.