

ARTESYN AVD100-48S05 Series

100 Watts Sixteenth-brick Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn AVD100-48S05 is a single output DC/DC converter with standard sixteenth -brick form factor and pin configuration. It delivers up to 20A output current with 5V output. Above 93.5% efficiency and excellent thermal performance makes it an ideal choice to supply power in datacom and telecommunication applications and can operate over an ambient temperature range of -40 °C ~ +85 °C.

A CONTRACTOR OF THE OWNER

AT A GLANCE

Total Power

100 Watts

Input Voltage

36 to 75 Vdc

of Outputs

Single

SPECIAL FEATURES

- Delivering up to 20A output
- Ultra-high efficiency 93.5% typ. at 60% load
- Wide input range: 36V ~ 75V
- Excellent thermal performance
- No minimum load requirement
- Basic isolation
- High power density
- Low output noise
- Reflow soldering-able
- RoHS 3.0

SAFETY

- UL+CUL EN 60950-1
 TUV EN 62368-1
- CE EN 62368-1

TYPICAL APPLICATIONS

- Telecom
- Datacom

MODEL NUMBERS

Standard	Output Voltage	Structure	Remote ON/OFF logic	ROHS
AVD100-48S05TL	5Vdc	Open-frame	Negative	RoHS 3.0
AVD100-48S05-6L	5Vdc	Open-frame	Negative	RoHS 3.0
AVD100-48S05B-6L	5Vdc	Baseplate	Negative	RoHS 3.0

Order Information

AVD100	-	48	S	05		В	-	Т	L
1)		2	3	4	5	6		\overline{O}	8

1	Model series	AVD: Standard sixteenth-brick series, 100: output power 100W
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output
4)	Rated output voltage	05: 5V output
5	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Baseplate	B: with baseplate; default: open-frame
7	Pin length	T:SMT, 6: 3.8mm Through Hole
8	RoHS status	L: RoHS 3.0

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings						
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage Operating -Continuous Non-operating -100mS	All All	V _{IN,DC}	-	-	80 100	Vdc Vdc
Maximum Output Power	All	P _{O,max}	-	-	100	W
Isolation Voltage ¹ Input to outputs	All		-	-	2250	Vdc
Ambient Operating Temperature	All	T _A	-40	-	+85	°C
Storage Temperature	All	T _{STG}	-55	-	+125	°C
Voltage at remote ON/OFF pin	All		-0.3	-	5	Vdc
Humidity (non-condensing) Operating Non-operating	All All		-	- -	95 95	% %

Note 1 - 1mA for 60s, slew rate of 1500V/10s.

Input Specifications

Table 2. Input Specifications						
Parameter	Conditions ¹	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	V _{IN,DC}	36	48	75	Vdc
Turn-on Voltage Threshold	I _O = I _{O,max}	V _{IN,ON}	31		36	Vdc
Turn-off Voltage Threshold	I _O = I _{O,max}	V _{IN,OFF}	30		35	Vdc
Lockout Voltage Hysteresis	I _O = I _{O,max}		1		3	V
Maximum Input Current (I _O = I _{O,max})	V _{IN,DC} = 36Vdc	l _{IN,max}	-	-	4	А
No Load Input Current $(V_0 \text{ On, } I_0 = 0\text{ A, } I_{\text{VSB}} = 0\text{ A})$	V _{IN,DC} = 36Vdc	I _{IN,no_load}	-	0.04	-	А
Standby Input Current	V _{IN,DC} = 36Vdc	I _{IN,standby}	-	0.01	-	А
Recommended Input Fuse	Fast blow external fuse recommended		-	-	5	А
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	-	100	-	uF
Input Reflected Ripple Current	Through 12uH inductor			40	-	mA
Input filter component values (C\L)	Internal values		-	0\1.2	-	uF∖uH
Operating Efficiency	$T_{A} = 25 \ ^{O}C$ $I_{O} = I_{O,max}$ $I_{O} = 60\% \ I_{O,max}$	η	-	92.5 93.5		%

Note 1 - Ta = 25 °C, airflow rate = 300 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

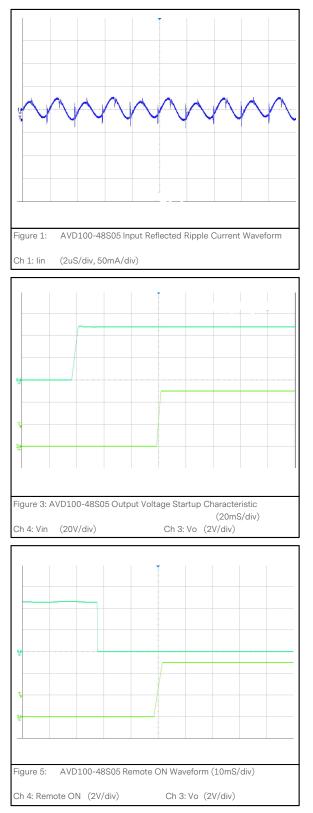
Parameter		Conditions ¹	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		V _{IN,DC} = 48Vdc I _O = 50% I _{O,max}	Vo	4.92	5.00	5.08	Vdc
Total Regulation		Over sample, line, load, temperature & life	Vo	4.9	5	5.1	Vdc
Output Voltage Line Regula	tion	All	%V _o	-	-	0.2	%
Output Voltage Load Regula	ation	All	%V _o	-	-	0.5	%
Output Voltage Temperature	e Regulation	All	%V _o	-	-	0.02	%/°C
Output Voltage Trim Range		All	Vo	4	-	5.5	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	_	120	_	mV _{PK-PK}
Output Current		All	Ι _ο	0	-	20	A
V _o Load Capacitance ²		All	Co	220	1000	10000	uF
V _o Dynamic Response		50%~75%~50% 25% load change slew rate = 0.1A/us	±V _O T _s	-	- -	150 200	mV uSec
	Peak Deviation - Settling Time		±V _O T _s	-	-	300 200	mV uSec
Output DC Current-limit Inc	eption ³			22	-	34	А
	Rise time	$I_{O} = I_{O,max}$	T _{rise}	-	-	50	mS
Turn-on Transient	Turn-on delay time	I _O = I _{O,max}	T _{turn-on}	-	3	100	mS
Output voltage overshoot		I _O = 0	%V _o	-	-	5	%
Switching Frequency		All	f _{sw}	230	240	250	KHz
Remote ON/OFF control (Positive logic)	Off-state voltage	All		-0.3	-	1.2	V
	On-state voltage	All		3.5	-	5	V
Remote ON/OFF control	Off-state voltage	All		3.5	-	5	V
(Negative logic)	On-state voltage	All		-0.3	-	1.2	V

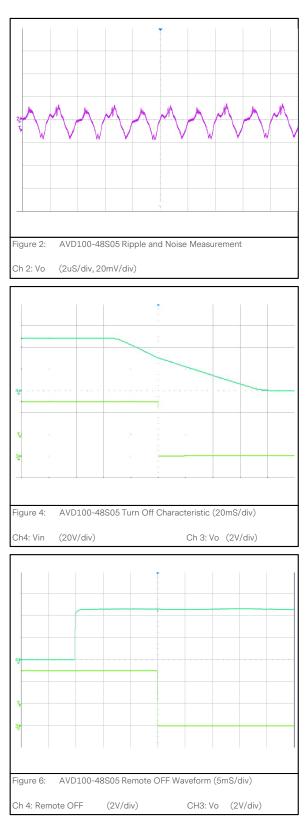
Note 1 - Ta = 25 $^{\circ}$ C, airflow rate = 300 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Note 2 - High frequency and low ESR is recommended.

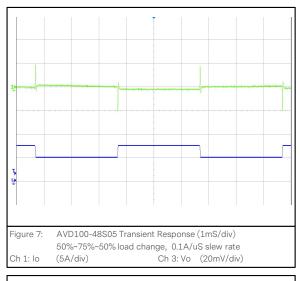
Note 3 - Hiccup: auto-restart when over-current condition is removed

Output Specifications

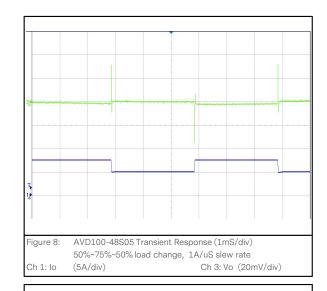

Table 3. Output Specifications Con't						
Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Output over-voltage protection ⁴	All	%V _o	116	-	150	%
Output over-temperature protection ⁵	All	Т	110	125	135	°C
Over-temperature hysteresis	All	Т	5	-	-	оС
Output voltage remote sense range	All	Vo	-	-	0.5	V
MTBF	Telcordia SR-332-2006; 80% load, 300LFM, 40 $^{\rm O}{\rm C}$ T _A		-	2.0	-	10 ⁶ h

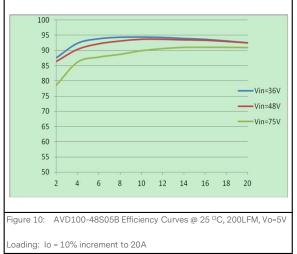

Note 4 - Hiccup: auto-restart when over-voltage condition is removed. Note 5 - Auto recovery.

ELECTRICAL SPECIFICATIONS

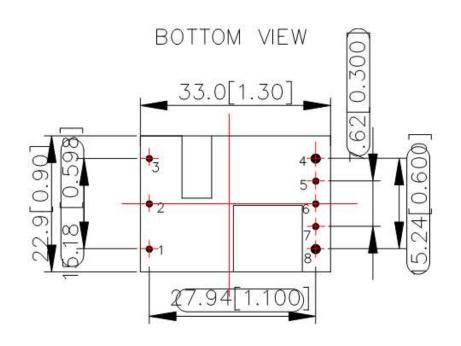

AVD100-48S05 Performance Curves

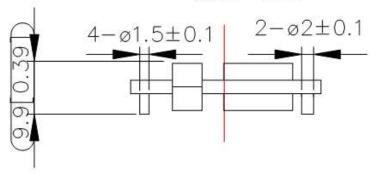






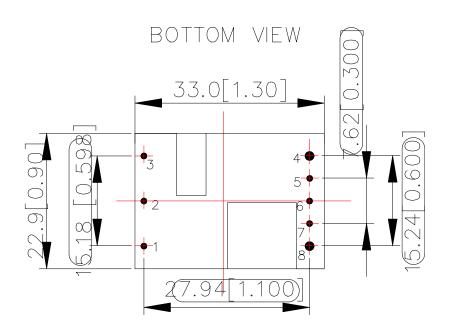
AVD100-48S05 Performance Curves

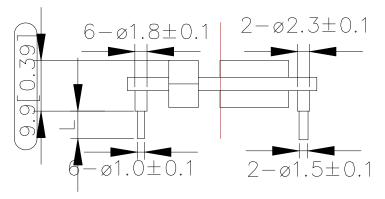



MECHANICAL SPECIFICATIONS

Mechanical Outlines – Surface Mounted Module

AVD100-48S05TL

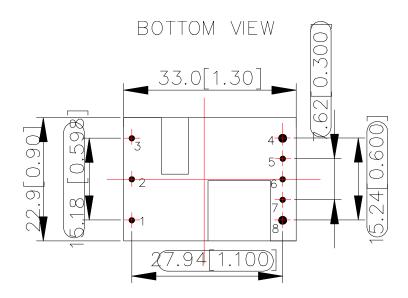

UNIT: mm [inch] TOLERANCE: X.Xmm±0.5mm[X.XX in.±0.02in.] X.XXmm±0.25mm[X.XXX in.±0.01in.]

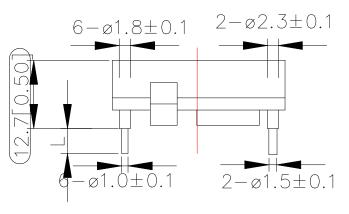

MECHANICAL SPECIFICATIONS

Mechanical Outlines - Open Frame Module

AVD100-48S05-6L

SIDE VIEW




MECHANICAL SPECIFICATIONS

Mechanical Outlines – Baseplate Module

AVD100-48S05B-6L

SIDE VIEW

UNIT: mm [inch] = 3.80 ± 0.25 mm TOLERANCE: X.Xmm ± 0.5 mm[X.XX in. ± 0.02 in.] X.XXmm ± 0.25 mm[X.XXX in. ± 0.01 in.]

Note: Depth penetration into base plate, of M3 screws used at baseplate mounting holes, not to exceed maximum of 3.0mm

MECHANICAL SPECIFICATIONS

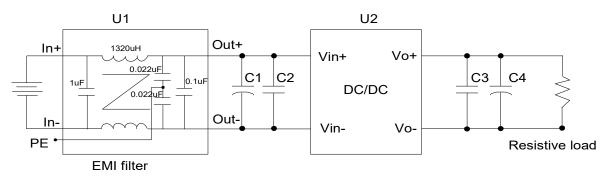
Pin length option

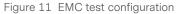
Device code suffix	L
-4	4.8mm±0.2mm
-6	3.8mm±0.2mm
-8	2.8mm±0.2mm
None	5.8mm±0.2mm

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input voltage
2	Remote On/Off	ON/OFF control terminal
3	Vin-	Negative input voltage
4	Vo-	Negative output voltage
5	Sense-	Negative remote sense
6	Trim	Output voltage trim
7	Sense+	Positive remote sense
8	Vo+	Positive output voltage

Electromagnetic compatibility Characteristics


AVD100-48S05 power supply is designed to meet the following EMC immunity specifications:


Table 4. Environmental Specifications					
Document	Description	Criteria			
EN55022 DC input port, Class A Limits	Conducted Emission	/			
IEC/EN 61000-4-2 Enclosure Port, Level 3	Immunity to Electrostatic Discharge	В			
IEC/EN 61000-4-6, DC input port, Level 2	Immunity to Continuous Conducted Interference	А			
IEC/EN 61000-4-4 DC input port, Level3	Immunity to Electrical Fast Transient	В			
IEC/EN 61000-4-5 DC input port Line to Ground(earth): 600V Line to Line: 600V	Immunity to Surges	В			
EN61000-4-29 DC input port	Immunity to Voltage Dips and Short Interruptions and Voltage Variations	В			

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

EMC test conditions

U1: Input EMC filter

U2: Module to test, AVD100-48S05

C1: 100uF/100V electrolytic capacitor; P/N: UPW2A101MHD (Nichicon) or equivalent caps

C2, C3: 1uF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps

C4:470uF electrolytic capacitor, P/N: UPM1A471MHD (Nichicon) or equivalent caps

Safety Certifications

The AVD100-48S05 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AVD100-48S05 power supply system				
Standard Agency		Description		
UL 60950-1, 2nd Edition, 2014-10-14; CAN/CSA C22.2 No. 60950-1-07, 2nd Edition, 2014-10	UL+CUL	US and Canada Requirements		
EN 62368-1:2014/A11:2017	TUV-SUD	European Requirements		
EN 62368-1:2014/A11:2017	CE	CE Marking		

Operating Temperature

The AVD100 series power supplies will start and operate within stated specifications at an ambient temperature from -40 $^{\circ}$ C to 85 $^{\circ}$ C under all load conditions. The storage temperature is -55 $^{\circ}$ C to 125 $^{\circ}$ C

Thermal Considerations – Open-Frame module

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points as shown in the figure 12. The temperature at these test points should not exceed the maximum values in Table 6.

For a typical application, forced airflow direction is from Vin- to Vin+, Figure 13 shows the derating of output current vs. ambient air temperature at different air velocity.

Figure 12 Temperature test point

Table 6. Temperature limit of the test point		
Test Point	Temperature limit	
Test Point	115 °C	

ENVIRONMENTAL SPECIFICATIONS

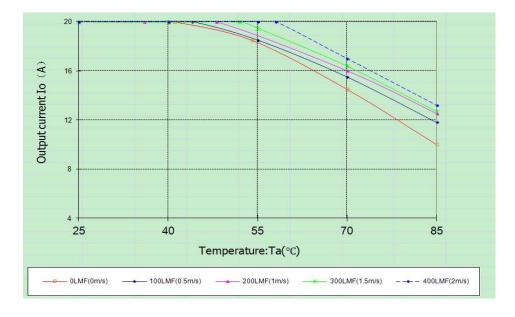


Figure 13 Derating curve

Thermal Considerations – Baseplate module

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling of the DC/DC converter can be verified by measuring the temperature at the test points as shown in the Figure 14. The temperature at these points should not exceed the max values in the table 7.

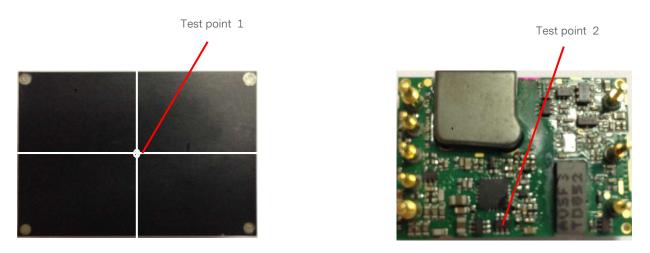


Figure 14 Temperature test point

ENVIRONMENTAL SPECIFICATIONS

Table 7. Temperature limit of the test point		
Test Point	Temperature limit	
Test point 1	108 °C	
Test point 2	113 °C	

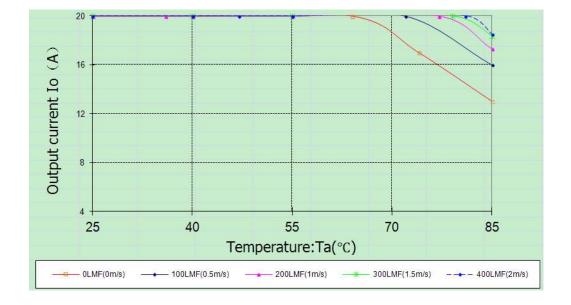
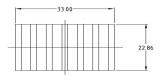
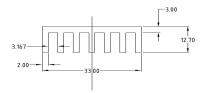




Figure 15 Output power derating, 48Vin, air flowing across the converter from pin 3 to pin 1

Heatsink Mechanical diagram

Qualification Testing

Parameter	Unit (pcs)	Test condition	
Halt test	4-5	T _{a,min} -30 °C to T _{a,max} +25 °C, 10 °C step, V _{in} = min to max, 0 ~ 100% load	
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m²/s³, -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axes	
Mechanical Shock	3	30g, 6ms, 3axes, 6directions, 3time/direction	
Thermal Shock	3	-55 °C to 125 °C, unit temperature 20cycles	
Thermal Cycling	3	-40 °C to 85 °C, temperature change rate: 1°C/min, cycles: 2cycles	
Humidity	3	40 °C, 95%RH, 48h	
Solder Ability	15	IPC J-STD-002C-2007	

APPLICATION NOTES

Typical Application

Below is the typical application of the AVD100-48S05 series power supply.

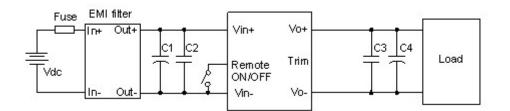


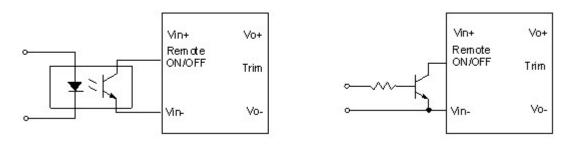
Figure 16 Typical application

C1: 100µF/100V electrolytic capacitor; P/N: UPW2A101MHD (Nichicon) or equivalent caps

C2, C3: 1µF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps

C4:470µF electrolytic capacitor, P/N: UPM1A471MHD (Nichicon) or equivalent caps

Fuse: External fast blow fuse with a rating of 5A. The recommended fuse model is 0451005.MRSN from LITTLEFUSE.



APPLICATION NOTES

Remote ON/OFF

Negative remote ON/OFF logic is available in AVD100-48S05. The logic is CMOS and TTL compatible.

The voltage between pin Remote ON/OFF and pin Vin- must not exceed the range listed in table "Feature characteristics" to ensure proper operation. The external Remote ON/OFF circuit is highly recommended as shown in figure 17.

Isolated remote ON/OFF circuit

Non-isolated remote ON/OFF circuit

Figure 17 External Remote ON/OFF circuit

APPLICATION NOTES

Trim Characteristics

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

 $R_{adj-dow} = \frac{510}{\Delta} - 10.2(K\Omega)$

 $R_{adj-u} = \frac{5.1 \times V_{nom} \times (100 + \Delta)}{1.225 \times \Delta} - \frac{510}{\Delta} - 10.2(K\Omega)$

 \triangle :Output rate against nominal output voltage.

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}}$$

V_{nom}: Nominal output voltage.

For example, to get 5.5V output, the trimming resistor is

$$\Delta = \left| \frac{100 \times (V_{nom} - V_0)}{V_{nom}} \right| = \frac{100 \times (5.5 - 5)}{5} = 10$$

 $R_{adj-up} = \frac{5.1 \times 5 \times (100 + 10)}{1.225 \times 10} - \frac{510}{10} - 10.2 = 167.78 (K\Omega)$

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power.

Internal side

Internal side

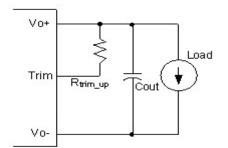


Figure 18 Trim up

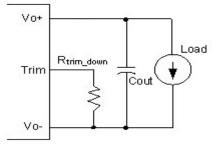


Figure 19 Trim down

APPLICATION NOTES

Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

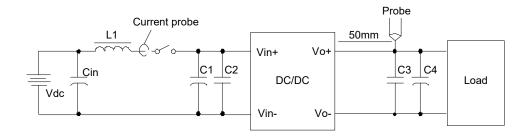


Figure 20 Input ripple & inrush current output ripple & noise test configuration

Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical

C1: 100uF/100V electrolytic capacitor; P/N: UPW2A101MHD (Nichicon) or equivalent caps

C2, C3: 1uF/100V X7R ceramic capacitor, P/N: C3225X7R2A105KT0L0U (TDK) or equivalent caps

C4: 470uF electrolytic capacitor, P/N: UPM1A471MHD (Nichicon) or equivalent caps

Note - Using a coaxial cable with series 50ohm resistor and 0.68uF ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended

APPLICATION NOTES

Package Information

Package type

moisture sensitivity level 3, moisture barrier bags.

Minimal package QTY

192 pcs.

Package disassembly

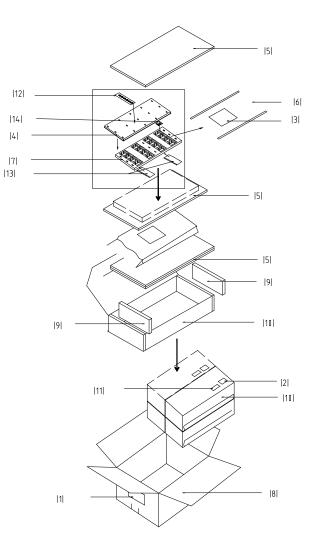
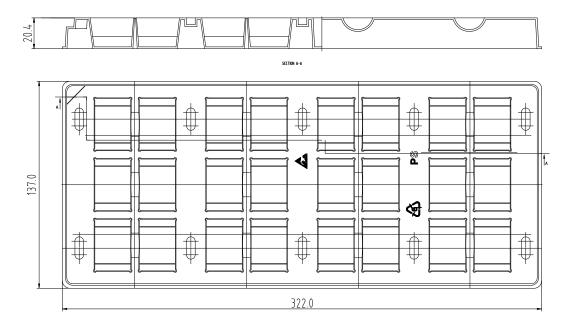


Figure 21 Package disassembly



APPLICATION NOTES

Package Information

Table 7. Assemblies description				
No.	Description			
1	Shipping label			
2	Moisture proof identification label			
3	Moistureproof caution label			
4	Tray cover			
5	Anti-static PE foam 1			
6	Moisture barrier bag			
7	Тгау			
8	Shipping carton			
9	Anti-static PE foam 2			
10	Inner box			
11	Model barcode label			
12	Humidity indicating card			
13	Desiccant			
14	Model			

Package tray information

SOLDERING INFORMATION

Soldering

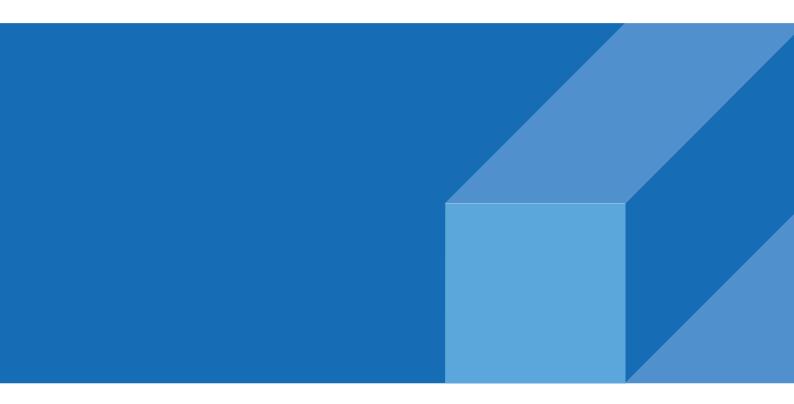
The product is intended for standard manual or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300 °C ~ 380 °C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Assembly


The maximum length of the screw driven into heat-sink is 2.5mm.

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	12.04.2014	First Issue	E. Wang
1.1	03.10.2015	Update efficiency specification	E. Wang
1.2	03.13.2015	Update thermal consideration part	E. Wang
1.3	05.18.2015	Add DC current-limit inception	E. Wang
1.4	09.17.2015	Update maximum input current and efficiency curve	E. Wang
1.5	11.10.2015	Update the efficiency and weight	K. Wang
1.6	09.01.2016	Update efficiency curve	E.Wang
1.7	02.24.2020	Update RoHS status	C.Liu
1.8	03.13.2020	Add Pin length in page12	K. Wang
1.9	05.28.2020	Update safety cert from 60950 to 62368-1	E.Wang
2.0	05.11.2021	Update the template	J. Zhang
2.1	10.13.2021	Update Trim formula	K. Wang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

Advanced Energy

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.