

ARTESYN AVO120-48S12

120 Watts Eighth-brick Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn AVO120-48S12 is a single output DC/DC converter with standard eighth-brick form factor and pin configuration. It delivers up to 10A output current with 12V output. Ultra-high 93% efficiency and excellent thermal performance makes it an ideal choice for use in datacom and telecommunication applications and can operate over an ambient temperature range of -40°C to +85°C.

AT A GLANCE

Total Power

120 Watts

Input Voltage

36 to 75 Vdc

of Outputs

Single

SPECIAL FEATURES

- Delivers up to 10A output current
- Industry standard Eighth-brick
- Basic isolation
- Ultra high efficiency 93% typ. at 100% load
- Wide input voltage of 36 to 75Vdc
- CNT function
- Remote sense
- Trim function: +10%/-20%
- Input under-voltage lockout
- Output over-current protection (hiccup)
- Output over-voltage protection (hiccup)
- Over-temperature protection
- RoHS 3.0
- Standard module with baseplate
- Pin length option: 4.8mm

- Excellent thermal performance
- No minimum load requirement
- pre-bias function

SAFETY

- IEC/UL/CSA 60950 2nd
- EN 62368-1
- GB4943
- UL94,V-0
- CE and UKCA Mark

TYPICAL APPLICATIONS

- Telecom
- Datacom

MODEL NUMBERS

Standard	Output Voltage	Structure	Remote ON/OFF logic	ROHS
AVO120-48S12-4L	12Vdc	Open-frame	Negative	RoHS 3.0
AVO120-48S12P-4L	12Vdc	Open-frame	Positive	RoHS 3.0
AVO120-48S12B-4L	12Vdc	Baseplate	Negative	RoHS 3.0
AVO120-48S12PB-4L	12Vdc	Baseplate	Positive	RoHS 3.0
AVO200-48S12-6L	12Vdc	Open-frame	Negative	RoHS 3.0
AVO120-48S12P-6L	12Vdc	Open-frame	Positive	RoHS 3.0
AVO200-48S12B-6L	12Vdc	Baseplate	Negative	RoHS 3.0
AVO120-48S12PB-6L	12Vdc	Baseplate	Positive	RoHS 3.0

Order Information

AVO	120	-	48	S	12	Р	В	-	4	L
<u>(1</u>)		2	3	4	(5)	6		7	8

1	Model series	AVO120: series name
2	Input voltage	48: input rated voltage 48V
3	Output number	S: single output
4	Rated output voltage	12: 12V output
(5)	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Baseplate	Default: without the baseplate, B: with baseplate
7	Pin length	4: 4.8mm; 6: 3.8mm
8	RoHS status	L: RoHS 3.0

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings						
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage Operating -Continuous Non-operating -100mS	AII AII	V _{IN,DC}	0	-	80 100	Vdc Vdc
Maximum Output Power	All	P _{O,max}	-	-	120	W
Ambient Operating Temperature	All	T _A	-40	-	+85	°C
Storage Temperature	All	T _{STG}	-55	-	+125	°C
Voltage at remote ON/OFF pin	All		-0.7	-	12	V
Humidity (non-condensing) Operating Non-operating	AII AII		- -	-	95 95	% %
Isolation Voltage ¹ Input to outputs Input to baseplate Outputs to baseplate	Open-frame modules Baseplate modules Baseplate modules		- - -	- - -	2000 1000 1000	Vdc Vdc Vdc
Isolation Resistance	All		10	-	-	Mohm

Note 1 - 1mA for 1min, slew rate of 2000V/10s

Input Specifications

Parameter	Conditions ¹	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	V _{IN,DC}	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,ON}	31	34	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,OFF}	30	33	35	Vdc
Lockout Voltage Hysteresis	All	-	1	-	3	V
Maximum Input Current ($I_0 = I_{O,max}$)	$V_{IN,DC} = 36Vdc$, $I_O = I_{O,max}$	I _{IN,max}	-	-	4.5	А
Inrush Current Transient Rating			-	-	1	A ² s
Recommended Input Fuse	Fast blow external fuse recommended		-	-	10	А
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	100	-	-	uF
Input Reflected Ripple Current	5Hz to 20MHz, 12uH source impedance, T _A = 25 °C		-	20	-	mA
Operating Efficiency	T _A = 25 °C I _O = I _{O,max} I _O = 50%I _{O,max} I _O = 20%I _{O,max}	η	- - -	93.0 93.0 89.5	- - -	% % %

Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

Table 3. Output Specification	Table 3. Output Specifications						
Parameter		Conditions ¹	Symbol	Min	Тур	Max	Unit
Factory Set Voltage		$V_{IN,DC} = 48Vdc; I_O = I_{O,max};$ $T_A = 25 °C$	Vo	11.8	12	12.2	Vdc
Output Voltage Line Regulatio	n	$V_{IN,DC} = V_{IN,DC,min}$ to $V_{IN,DC,max}$	Vo	-	6		mV
Output Voltage Load Regulation	on	$I_{O} = I_{O,min}$ to $I_{O,max}$	Vo	-	10		mV
Output Voltage Temperature F	Regulation	Tc = -40 °C to +100 °C	V _O	-	-	0.02	%/°C
Output Voltage Trim Range		All	Vo	9.6	-	13.2	Vdc
Total Output Voltage Range		Over sample, line, load, temperature & life		11.6	12	12.4	Vdc
Output Ripple and Noise Peak-to-Peak		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	-	65	-	mV _{PK-PK}
Output Current		All	Io	0	-	10	А
Output DC Current-limit Incep	otion ²	All	Io	10.5		18	А
Vout Pre-bias Level						90	%Vo
External Load Capacitance ³		All	Co	100		6000	uF
VO Dynamia Bashanaa		25% to 50% to 25% 25% load change	±V _O	-	100	-	mV
VO Dynamic Response		slew rate = 0.1A/uS	T _s	-	150	-	uS
Peak Deviation Settling Time		25% to 50% to 25% 25% load change	±V _Ο		150	-	mV
		slew rate = 1A/uS	T _s		150	-	uS
	Rise Time	$I_{O} = I_{max}$	T _{rise}	1	15		mS
Turn-on transient	Turn-on Delay time	$I_{O} = I_{max}$	T _{turn on}	-	50		mS
	Output Voltage overshoot	I _O = 0	%V _o	-	0		%

Note 1 - Ta = 25 $^{\circ}$ C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted. Note 2 - Hiccup: auto-restart when over-current condition is removed.

Note 3 - High frequency and low ESR is recommended.

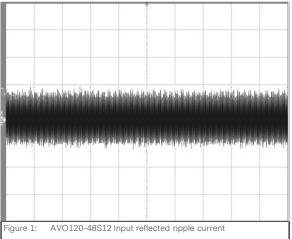
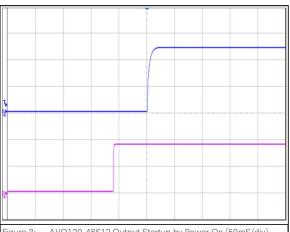
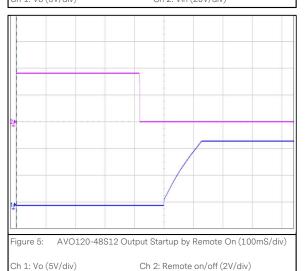
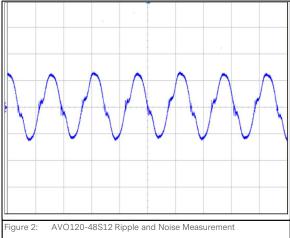

Output Specifications

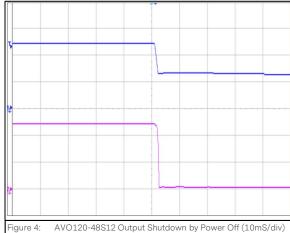
Table 3. Output Specifications Con't							
Parameter		Conditions	Symbol	Min	Тур	Max	Unit
Switching Frequency		All	f _{sw}	-	165	-	kHz
Remote ON/OFF	Off-state Voltage	All		-0.7	-	1.2	V
control (positive logic)	On-state Voltage	All		3.5	-	12	V
Remote ON/OFF	Off-state Voltage	All		3.5	-	12	V
control (negative logic)	On-state Voltage	All		-0.7	-	1.2	V
Output Over-voltage Pro	otection ⁴	All		13.8		19	V
Output Over-temperature Protection ⁵ With Baseplate Without Baseplate		AII AII	T T	- 110	99	- 135	°C
Over-temperature Hysteresis Without Baseplate		All	Т	5	-	-	°C
Output Voltage Remote Sense Range		All	Vo	-	-	1	V
MTBF		V _{IN,DC} = 48Vdc, 100% load, 25 °C T _A		-	1.5	-	10 ⁶ h


Note 4 - Hiccup: auto-restart when over-voltage condition is removed. Note 5 - Auto recovery.


AVO120-48S12 Performance Curves



Ch 1: Vo (10mS/div, 10mA/div)



AVO120-48S12 Output Startup by Power On (50mS/div) Ch 1: Vo (5V/div) Ch 2: Vin (20V/div)

Ch 1: Vo $(20mV/div, 2\mu S/div)$

Ch 1: Vin (20V/div) Ch 2: Vo (5V/div)

advancedenergy.com Rev. 05.26.22_#2.4

AVO120-48S12 Performance Curves

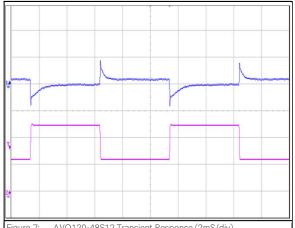
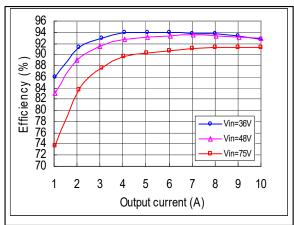
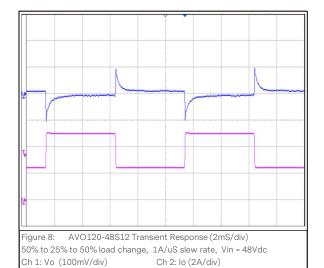
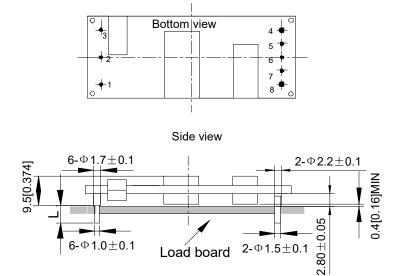


Figure 7: AVO120-48S12 Transient Response (2mS/div) 50% to 25% to 50% load change, 0.1A/uS slew rate, Vin = 48Vdc Ch 1: Vo (100mV/div) Ch 2: lo (2A/div)


Figure 9: AVO120-48S12 Typical Efficiency
Vin = 36 to 75Vdc, T_A=25°C, Vo=12V, Air velocity = 300LFM

MECHANICAL SPECIFICATIONS

Mechanical Outlines - Open-Frame Module (Top & Side View)

Unit: mm[inch] Bottom view: pin on upside

Load board

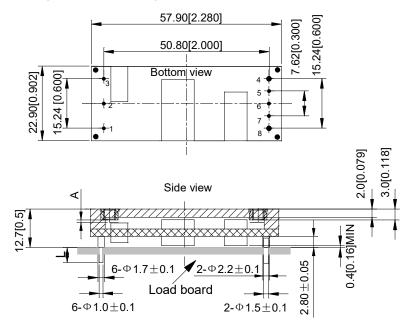

Tolerance: $X.Xmm \pm 0.5mm[X.X in. \pm 0.02in.]$ $X.XXmm \pm 0.25mm[X.XX in. \pm 0.01in.]$

Figure 10 Open-frame product

MECHANICAL SPECIFICATIONS

Mechanical Outlines - Base plate Module (Top & Side View)

Unit: mm[inch] Bottom view: pin on upside

Tolerance: X.Xmm \pm 0.5mm[X.X in. \pm 0.02in.] X.XXmm \pm 0.25mm[X.XX in. \pm 0.01in.]

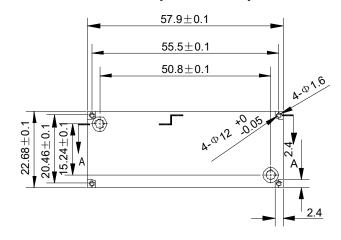


Figure 11 Baseplate product

Note: Depth penetration into base plate, of M3 screws used at baseplate mounting holes, not to exceed maximum of 3.0mm.

MECHANICAL SPECIFICATIONS

Pin length option

Device code suffix	L
-4	4.8mm±0.2mm
-6	3.8mm±0.2mm
-8	2.8mm±0.2mm
None	5.8mm±0.2mm

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input voltage
2	Remote ON/OFF	Remote control
3	Vin-	Negative input voltage
4	Vo-	Positive output voltage
5	S-	Negative remote sense
6	Trim	Output voltage trim
7	S+	Positive remote sense
8	Vo+	Positive output voltage

Electromagnetic compatibility Characteristics

Table 4. Environmental Specifications:

Document	Description	Criteria
EN55022, Class A Limits	Conducted and Radiated EMI Limits	/
IEC/EN 61000-4-2, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test. Enclosure Port	В
IEC/EN 61000-4-6, Level 2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Continuous Conducted Interference. DC input port	В
IEC/EN 61000-4-4, Level3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient. DC input port.	В
IEC/EN 61000-4-5	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to surges - 600V common mode and 600V differential mode for DC ports	А
EN61000-4-29	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Voltage Dips and short interruptions and voltage variations. DC input port	В

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

Criterion C: Temporary loss of output, the correction of which requires operator intervention.

Criterion D: Loss of output which is not recoverable, owing to damage to hardware.

EMC test conditions

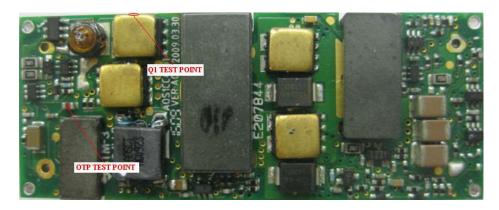
See Figure16.

Qualification Testing

Parameter	Unit (pcs)	Test condition
Halt test	4-5	$\rm T_{a,min}$ -30 °C to $\rm T_{a,max}$ +25 °C, 10 °C step, $\rm V_{in}$ = min to max, 0 to 100% load
Vibration	3	Frequency range: 5Hz to 20Hz, 20Hz to 200Hz, A.S.D: 1.0m ² /s ³ , -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axes
Mechanical Shock	3	30g, 6mS, 3axes, 6directions, 3time/direction
Thermal Shock	3	-55 °C to 125 °C, unit temperature 20cycles
Thermal Cycling	3	-40 °C to 85 °C, temperature change rate: 1°C/min, cycles: 2cycles
Humidity	3	40 °C, 95%RH, 48h
Solder Ability	15	IPC J-STD-002C-2007

Safety Certifications

The AVO120-48S12 power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.


Table 5. Safety Certifications for AVO120-48S12 series module				
Document	Agency	Description		
UL/CSA 60950	UL+CUL	US and Canada Requirements		
EN60950	TUV	European Requirements		
IEC60950	IEC	International Requirements		
CE	CE	CE Marking		
UKCA	UKCA	UK Requirements		

Thermal Considerations - Open-Frame

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points. The temperature at these points should not exceed the max values in below table.

For a typical application, forced airflow direction is from Vin- to Vin+. Figure 13 shows the derating of output current vs. ambient air temperature at different air velocity.

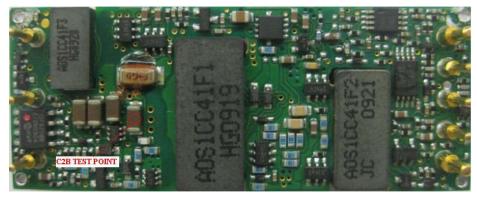


Figure 12 Thermal test points (TOP)

Test Point	Temperature limit
Q1 Test Point	128 °C
C2B Test Point	116 °C
OTP Test Point	112 °C

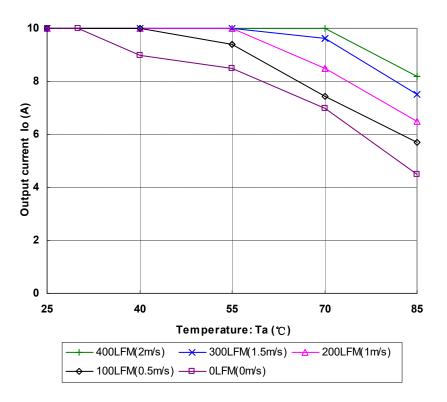


Figure 13 Output power derating, 48Vin, air flowing across the converter from Vin- and Vin+

Thermal Considerations - Base plate

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points. The temperature at this point should not exceed the max values in below table.

For a typical application, forced airflow direction is from Vin- to Vin+. Figure 15 shows the derating of output current vs. ambient air temperature at different air velocity.

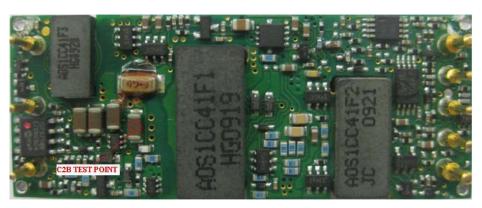


Figure 14 Thermal test points(TOP)

Test Point	Temperature limit
Test Point 1	99 °C
C2B Test Point	116 °C

17

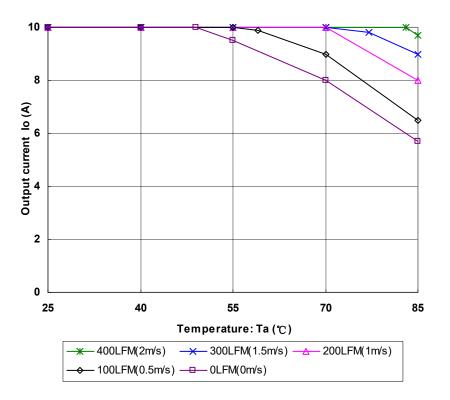


Figure 15 Output power derating, 48Vin, air flowing across the converter from Vin- and Vin+

Typical Application

Below is the typical application of the AVO120-48S12 series power supply.

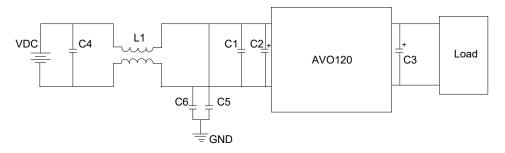


Figure 16 Typical application

C4: SMD ceramic-100V-1000nF-X7R-1210

C1: SMDceramic-100V-100nF-±10%-X7R-1206

C2: 100µF/100V electrolytic capacitor, High frequency and low ESR

C3: 470µF/100V electrolytic capacitor, High frequency and low ESR

C5 C6: SMD ceramic- 22nF/1000V/X7R-1210 L1: 1320uH-±25%-4A-R5K-21*21*12.5mm

Remote ON/OFF

Either positive or negative remote ON/OFF logic is available in AVO120-48S12-4. The logic is CMOS and TTL compatible. Below is the detailed internal circuit and reference in AVO120-48S12-4.

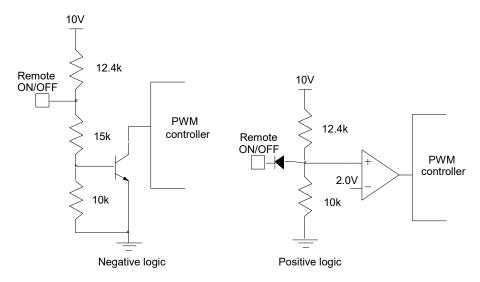


Figure 17 External Remote ON/OFF circuit

Trim Characteristics

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output voltage.

$$R_{adj_down} = \left(\frac{511}{\Delta\%} - 10.22\right) k\Omega$$

$$R_{adj_up} \! = \! \! \left(\! \frac{5.11 V_{nom} \left(100 - \Delta \% \right)}{V_{ref} \Delta \%} - \frac{511}{\Delta \%} \! - 10.22 \right) k \Omega$$

 R_{adj_down} : Value of external adjustment resistor which shall be connected between Trim and –Sense for trimming down.

 Δ % : Output voltage change rate against nominal output voltage.

For example, If Vout needs to be 9.6V, then |9.6 - 12| / 12 = 0.2 = 20%, $\Delta\% = 20$, $R_{adj_down} = 15.33 \ k\Omega$.

 R_{adj_up} : Value of external adjustment resistor which shall be connected between Trim and +Sense for trimming up.

Vnom: Nominal output voltage.

Vref = 1.225 V

When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power and the minimum input voltage should be increased as shown in below figure.

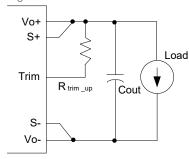


Figure 18 Trim up

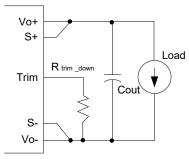


Figure 19 Trim down

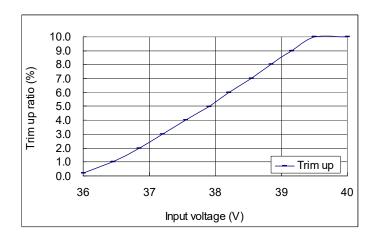


Figure 20 Trim up curve at full power

Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

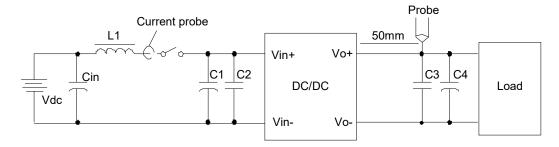


Figure 21 Input ripple & inrush current output ripple & noise test configuration

Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical C1 to C4: See Figure 16

Note: Using a coaxial cable with series 50Ω resistor and 0.68uF ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended.

22

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminal of the load respectively to compensate the voltage drop on the transmission line.

If the sense compensate function is not necessary, connect S+ to Vo+ and S- to Vo- directly.

Weight

The AVO120-48S12 (Open-frame) weight is 26g with +/-10% tolerance.

Soldering

The product is intended for standard manual, wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260 $^{\circ}$ C for maximum 7s. When soldering by hand, the iron temperature should be maintained at 300 $^{\circ}$ C to 380 $^{\circ}$ C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

The maximum exposure temperature for the body of the unit is 245 $^{\circ}\text{C}$, and the termination (solder) temperature for lead-free solders should be 270 $^{\circ}\text{C}$.

Cleaning of solder joint can be performed with cleaning solvent IPA or similative.

Assembly

The maximum length of the screw driven into the heat-sink is 3.3mm.

25

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	08.25.2014	First Issue	B. Wang
1.6	09.23.2015	Change Remote sense form 0.12 to 1V	B. Wang
1.7	09.30.2015	Add the "isolation resistor"	K. Wang
1.8	01.16.2018	Update the thermal point	K. Wang
1.9	12.17.2019	Update solder information	K. Wang
2.0	02.26.2020	Update the RoHS information	A. Zhang
2.1	10.22.2020	Update typo for ripple waveform	K. Wang
2.2	01.06.2021	Update the template	J. Zhang
2.3	04.20.2022	Update the Trim Characteristics Description	K. Jiao
2.4	05.26.2022	Add UKCA Mark	J. Zhang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com(Sales Support) productsupport.ep@aei.com(Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2022 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.