

# ADVANCED ENERGY FCM10K SERIES MODULE

10,000 W AC/DC Power Supply Platform for Bulk Front-end Industrial Applications

### **PRODUCT DESCRIPTION**

Advanced Energy's FCM10K series provides for three phase three wire of AC-DC embedded power requirements. Featuring high build quality with robust screw terminals, long life, and typical fullload efficiency of greater than 96.3%, reaching a peak of 97%, these units are ideal for use in industrial applications. They are backed by a comprehensive set of industrial safety approvals and certificates. Variable-speed "smart fans" draw on software controls developed by Advanced Energy to match fan speed to the unit's cooling requirement and load current. Slowing the fan not only saves power but also reduces wear, thus extending its life.

### **SPECIAL FEATURES**

- 10,000 W output power
- 81.6 mm x 125.85 mm x 460 mm
- -40 to +50°C
- 5 V at 2 A housekeeping
- Peak efficiency: 97% typical
- Supports NFC tag application
- Semi F47 compliance
- Five-year warranty

### SAFETY

- UL 62368-1, 3<sup>rd</sup> Ed
- CAN/CSA C22.2 62368-1, 3<sup>rd</sup> Ed
- EN IEC 62368-1:2020/A11:2020
- IEC 62368-1: 2018 3rd Ed
- CB Certificate and Report (IEC 62368-1 3<sup>rd</sup> Ed)
- CE (LVD+RoHS)

### COMPLIANCE

- EMI Class B, with 6 dB margin
- EN61000 Immunity

### AT A GLANCE

#### **Total Power**

10,000 W

#### **Input Voltage**

187 to 528 VAC, 3 Phase 3 Wire + PE

#### Nominal Output Voltage

54.5 VDC

#### # of Outputs

Single





## TABLE OF CONTENTS

| <u>Section</u> | 1          | Model Numbers                                | 4  |
|----------------|------------|----------------------------------------------|----|
| Section        | 2          | Electrical Specifications                    | 5  |
|                | <u>2.1</u> | Absolute Maximum Ratings                     | 5  |
|                | 2.2        | Input Specifications                         | 6  |
|                | <u>2.3</u> | Output Specifications                        | 7  |
|                | <u>2.4</u> | System Timing Specifications                 | 8  |
|                | <u>2.5</u> | System Timing Diagram                        | 9  |
|                | <u>2.6</u> | Performance Curves                           | 10 |
|                | <u>2.7</u> | Protection Function Specifications           | 12 |
| <u>Section</u> | 3          | Mechanical Specifications                    | 14 |
|                | <u>3.1</u> | Mechanical Outlines (-P)                     | 14 |
|                | <u>3.2</u> | Mechanical Outlines (-T)                     | 15 |
|                | 3.3        | Connector Definitions (-P)                   | 16 |
|                | <u>3.4</u> | Connector Definitions (-T)                   | 18 |
|                | <u>3.5</u> | Power/Signal Mating Connectors and Pin Types | 20 |
|                | <u>3.6</u> | LED Indicator Definition                     | 21 |
|                | <u>3.7</u> | Weight                                       | 22 |
| <u>Section</u> | 4          | NFC Tag Specification                        | 23 |
| Section        | 5          | Environmental Specifications                 | 24 |
|                | <u>5.1</u> | EMC Immunity                                 | 24 |
|                | <u>5.2</u> | Safety Certifications                        | 25 |
|                | <u>5.3</u> | EMI Emissions                                | 26 |
|                | <u>5.4</u> | Operating Temperature                        | 28 |
|                | <u>5.5</u> | Forced Air Cooling                           | 28 |
|                | <u>5.6</u> | Storage Temperature                          | 29 |
|                | <u>5.7</u> | Altitude                                     | 29 |

### TABLE OF CONTENTS

| Section | 5           | Environmental Specifications                    | 24 |
|---------|-------------|-------------------------------------------------|----|
|         | <u>5.8</u>  | Humidity                                        | 29 |
|         | <u>5.9</u>  | Vibration                                       | 29 |
|         | <u>5.10</u> | Shock                                           | 31 |
| Section | 6           | Power and Control Signal Descriptions           | 32 |
|         | 6.1         | Input Terminal                                  | 32 |
|         | 6.2         | Output Terminal (-P)                            | 32 |
|         | <u>6.3</u>  | Output Terminal (-T)                            | 32 |
|         | <u>6.4</u>  | Isolated Signals                                | 33 |
|         | <u>6.5</u>  | Non-Isolated Signals                            | 36 |
| Section | 7           | Communication BUS Description                   | 37 |
| Section | 8           | MODBUS Specification                            | 40 |
|         | <u>8.1</u>  | FCM10K Series MODBUS General Instructions       | 40 |
|         | <u>8.2</u>  | The FCM10K Series Supported Modbus Command List | 44 |
| Section | 9           | Application Notes                               | 54 |
|         | <u>9.1</u>  | Mode of Operation                               | 54 |
|         | <u>9.2</u>  | Digital and Analog Command                      | 54 |
|         | <u>9.3</u>  | Output Adjustability and Programmability        | 55 |
|         | <u>9.4</u>  | Current Share                                   | 64 |
|         | <u>9.5</u>  | Output Ripple and Noise Measurement             | 65 |
|         | <u>9.6</u>  | Accessories                                     | 66 |
| Section | 10          | Record of Revision and Changes                  | 68 |



### SECTION 1 MODEL NUMBERS

| Standard  | Nominal Output<br>Voltage | Trim Range   | Max Current | Standby Output | Dimensionon            |
|-----------|---------------------------|--------------|-------------|----------------|------------------------|
| FCM10KW-N | 54.5 VDC                  | 48 to 60 VDC | 183.5A      | 5VDC at 2A     | 81.6 x 125.85 x 460 mm |

Note – Add "-T" for Terminal Block Add "-P" for Pluggable Connector

#### **Ordering Information**

| FCM | 10K | Y | - | Α   | - | В |
|-----|-----|---|---|-----|---|---|
| 1   | 2   | 3 |   | (4) |   | 5 |

| 1)  | Model Series              | FCM: Series Name                                                                          |
|-----|---------------------------|-------------------------------------------------------------------------------------------|
| 2   | Max Output Power in Watts | 10K = 10 kW                                                                               |
| 3   | Voltage Code              | W = 54.5 VDC at 183.5A; Programmable Range: 48-60 VDC                                     |
| 4   | Module Type               | N = Standard (Narrow Range)<br>W = Wide Range<br>H = High Isolation<br>F = Fast Slew Rate |
| (5) | Interface Type            | T = Terminal for Standalone Module<br>P = Pluggable for Module Used in Shelf              |



#### 2.1 Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

| Table 1. Absolute Maximum Ratings                                                                                                                                                                                                                                                                                                                                                     |             |                    |          |         |                                                           |                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|----------|---------|-----------------------------------------------------------|------------------------------------------------------|
| Parameter                                                                                                                                                                                                                                                                                                                                                                             | Model       | Symbol             | Min      | Тур     | Max                                                       | Unit                                                 |
| Input Voltage<br>AC continuous operation                                                                                                                                                                                                                                                                                                                                              | All modules | V <sub>IN,AC</sub> | 187      | 208-480 | 528                                                       | VAC                                                  |
| Maximum Output Power                                                                                                                                                                                                                                                                                                                                                                  | All modules | P <sub>O,max</sub> | -        | -       | 10000                                                     | W                                                    |
| Isolation Voltage<br>Primary to Protective Earth (PE)<br>Primary to Secondary<br>Primary to User-Accessible<br>Secondary (SELV) to Protective Earth (PE) <sup>1</sup><br>Secondary (NSELV) to Protective Earth (PE) <sup>2</sup><br>Secondary (SELV) to User-accessible <sup>1</sup><br>Secondary (NSELV) to User-accessible <sup>2</sup><br>User-accessible to Protective Earth (PE) | All modules |                    |          |         | 2500<br>2500<br>2500<br>100<br>2500<br>500<br>2500<br>100 | VDC<br>VDC<br>VDC<br>VDC<br>VDC<br>VDC<br>VDC<br>VDC |
| Ambient Operating Temperature <sup>3</sup>                                                                                                                                                                                                                                                                                                                                            | All modules | T <sub>A</sub>     | -40      | -       | +70                                                       | °C                                                   |
| Storage Temperature                                                                                                                                                                                                                                                                                                                                                                   | All modules | T <sub>STG</sub>   | -40      | -       | +85                                                       | °C                                                   |
| Humidity (non-condensing)<br>Operating<br>Non-operating                                                                                                                                                                                                                                                                                                                               | All modules |                    | 20<br>10 | -       | 90<br>95                                                  | %                                                    |
| Altitude<br>Operating<br>Non-operating                                                                                                                                                                                                                                                                                                                                                | All modules |                    | -        | -       | 3000<br>9144                                              | m<br>m                                               |
| MTBF <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                     | All modules |                    | 200      | -       | -                                                         | kHours                                               |

Note 1 - Secondary (SELV) refers to the power supply variant with output voltage 60V and below.

Note 2 - Secondary (NSELV) refers to the power supply variant with output voltage greater than 60V. Note 3 - -40°C to 50°C at 100% rated load, above 50°C to 70°C, power derated linearly. The power supply shall be able to start at -40°C rated full load. Note 4 - Using Telcordia specifications at 25°C ambient at full load, nominal line of 480 VAC. With the power supply installed in a system in a 30°C ambient environment and operating at full load, capacitor life shall be 5 years, minimum, for all electrolytic capacitors contained within this power supply. The power supply shall demonstrate an MTBF level of > 500,000 hours based on cumulated DRV testing hours.



### 2.2 Input Specifications

| Table 2. Input Specifications                                     |                                                                                                                                                                                                                                                                      |                       |                                        |                                        |                                        |                                        |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Parameter                                                         | Condition                                                                                                                                                                                                                                                            | Symbol                | Min                                    | Тур                                    | Max                                    | Unit                                   |
| Operating Input Voltage, AC                                       | All                                                                                                                                                                                                                                                                  | V <sub>IN,AC</sub>    | 187<br>216<br>311<br>342<br>360<br>432 | 208<br>240<br>346<br>380<br>400<br>480 | 229<br>264<br>381<br>418<br>480<br>528 | VAC<br>VAC<br>VAC<br>VAC<br>VAC<br>VAC |
| Input AC Frequency                                                | All                                                                                                                                                                                                                                                                  | f <sub>IN</sub>       | 47                                     | 50/60                                  | 63                                     | Hz                                     |
| Maximum Input Current $(I_{O} = I_{O,max})$                       | V <sub>IN,AC</sub> = 480 VAC                                                                                                                                                                                                                                         | l <sub>IN,max</sub>   | -                                      | -                                      | 15                                     | А                                      |
| No Load Input Power<br>(V <sub>o</sub> = On, I <sub>o</sub> = 0A) | V <sub>IN,AC</sub> = 480 VAC                                                                                                                                                                                                                                         | $P_{IN,no-load}$      | -                                      | 25                                     | -                                      | W                                      |
| Turn On Delay via AC Mains                                        | All                                                                                                                                                                                                                                                                  | t <sub>Turn-on</sub>  | -                                      | -                                      | 2.5                                    | S                                      |
| Harmonic Line Currents                                            | All                                                                                                                                                                                                                                                                  | THD                   | EN 61000-3-2                           |                                        |                                        |                                        |
| Power Factor                                                      | $ \begin{array}{l} V_{\text{IN,AC}} = 380 \text{ to } 415 \text{ VAC} \\ V_{\text{IN,AC}} = 480 \text{ VAC} \\ F_{\text{IN,AC}} = 50/60 \text{ Hz} \\ I_{O} = 25\% I_{O,\text{max}} \\ I_{O} = 50\% I_{O,\text{max}} \\ I_{O} = 100\% I_{O,\text{max}} \end{array} $ | PF                    | -                                      | 0.92<br>0.98<br>0.98                   | -<br>-                                 |                                        |
| Startup Surge Current (Inrush)                                    | V <sub>IN,AC</sub> = 480 VAC                                                                                                                                                                                                                                         | I <sub>IN,surge</sub> | -                                      | -                                      | 60                                     | A <sub>PK</sub>                        |
| Input Fuse (Double Line Fusing)                                   | Internal, Fast acting,<br>500 VAC                                                                                                                                                                                                                                    |                       | -                                      | -                                      | 20                                     | А                                      |
| Efficiency                                                        |                                                                                                                                                                                                                                                                      | η                     | -<br>-<br>-<br>-                       | 91.5<br>93.5<br>97<br>96.3<br>96.3     | -<br>-<br>-<br>-                       | %<br>%<br>%<br>%                       |
| System Stability<br>Phase Margin<br>Gain Margin                   |                                                                                                                                                                                                                                                                      |                       | 45<br>-6                               | -<br>-                                 | -<br>-                                 | Ø<br>dB                                |



#### 2.3 Output Specifications

| Parameter                                  |                | Condition                                   | Symbol                                                        | Min    | Тур            | Max         | Unit           |
|--------------------------------------------|----------------|---------------------------------------------|---------------------------------------------------------------|--------|----------------|-------------|----------------|
| Nominal Output Voltage                     |                | All                                         | Vo                                                            | -      | 54.5           | -           | VDC            |
| Standby Output Voltage                     |                | All                                         | V <sub>Standby</sub>                                          | -      | -              | 5           | VDC            |
| Output Current                             |                | All                                         | Ι <sub>ο</sub>                                                | 0      | -              | 183.5       | Α              |
| Standby Output Current                     |                | All                                         | I <sub>Standby</sub>                                          | 0      | -              | 2           | А              |
| Output Voltage Adjustment Ra               | inge           | All                                         | Vo                                                            | 48     | -              | 60          | VDC            |
| Programming Accuracy <sup>1</sup>          |                | Via digital command                         | ±%V <sub>o</sub>                                              | -      | -              | 0.5         | %              |
|                                            |                | Via analog                                  | ±%V <sub>o</sub>                                              | -      | -              | 1           | %              |
| Output Static Regulation <sup>1</sup>      |                | At steady state line                        | $\substack{\pm  V_O \\ \pm  V_{Standby}}$                     | -<br>- | -              | 0.5<br>5    | %              |
|                                            |                | At steady state load                        | $\substack{\pm  V_O \\ \pm  V_{Standby}}$                     | -      | -              | 0.5<br>5    | %              |
| Line Transient Regulation <sup>2</sup>     | Peak Deviation | 10% line change                             | $\begin{array}{c} \pm  V_{O} \\ \pm  V_{Standby} \end{array}$ | -<br>- | -              | 3<br>5      | %              |
| Load Transient Regulation <sup>2</sup>     | Peak Deviation | 25% load change                             | ±%V <sub>o</sub>                                              | -      | -              | 5           | %              |
| Output Ripple, pk-pk <sup>3, 4, 5, 6</sup> |                |                                             | V <sub>O</sub><br>V <sub>Standby</sub>                        | -<br>- | -              | 1<br>100    | %<br>mV        |
| Overshoot & Undershoot                     |                | l <sub>o</sub> = 0 to 183.5A                | $\pm$ %V <sub>o</sub>                                         | -      | -              | 5           | %              |
| Output Load Capacitance                    |                | All                                         | Co                                                            | 0      | -              | 22000       | uF             |
| Output Rise Time                           |                | Vo = 48 VDC<br>Vo = 54.5 VDC<br>Vo = 60 VDC | t <sub>Rise</sub>                                             | -<br>- | 70<br>80<br>88 | -<br>-<br>- | ms<br>ms<br>ms |
| Hold Up Time <sup>7</sup>                  |                | Vo = 54.5 VDC<br>Po = 6kW,<br>Po = 10kW     | t <sub>Hold-up</sub>                                          | -      | 20<br>12       | -           | ms<br>ms       |

Note 1 - Ambient temperature at 23°C  $\pm$  5°C (with 30 minutes warm-up period).

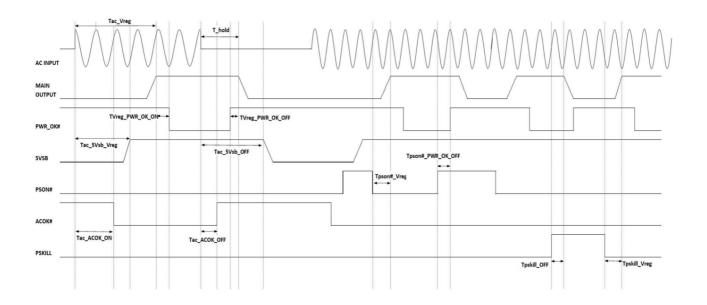
Note 2 - Minimum dynamic load is 9.175A; maximum test capacitance = 22,000 uF. Note 3 - The Value measured at room temperature, overload, and line range at the nominal output voltage.

Note 4 - In case the voltage is adjusted above the nominal setting, the ripple expected is 1% of the output voltage.

Note 5 - Main Output Ripple at absolute no load: PSU expected to enter burst operation mode, peak-to-peak ripple on main output shall still be 1% max pk-pk.

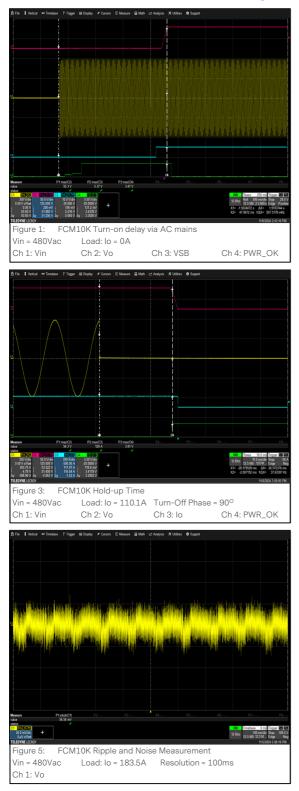
Note 6 - Ripple noise at extremely low temperatures (below 0°C) is expected higher until the unit gets stabilized due to the ESR change of the E-Caps. Ripple noise at -20°C ambient is expected to be around +/-10% of output voltage.

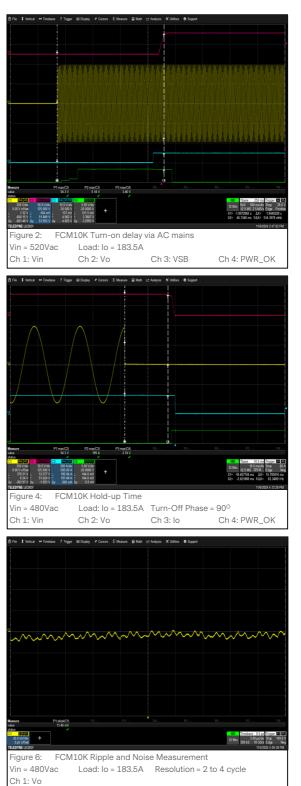
Note 7 - The main output remains within its error band for a minimum of 12 ms from a complete line loss, occurring at any point in the line cycle, at the maximum rated output loading when tested at nominal output voltage.




### 2.4 System Timing Specifications

| Table 4. System Timing | Specifications                                                                                                                                 |        |        |          |          |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|----------|----------|
| ltem                   | Parameter                                                                                                                                      | Min    | Тур    | Max      | Unit     |
| Tac_Vreg               | Delay from AC being applied to main output being within regulation.                                                                            | -      | -      | 2.5      | S        |
| Tac_acok_on            | Delay from AC being applied to ACOK signal assertion (going Low).                                                                              | -      | -      | 1000     | ms       |
| TVreg_PWR_OK_ON        | Delay from main output within regulation to PWR_OK# signal assertion (going Low).                                                              | 10     | -      | 500      | ms       |
| Tac_5Vsb_Vreg          | Delay from AC being applied to 5Vsb being within regulation.                                                                                   | -      | -      | 1.9      | S        |
| Tac_5Vsb_OFF           | Delay from AC loss to 5Vsb going out of regulation.                                                                                            | 120    | -      | -        | ms       |
| T_hold                 | Delay from AC loss to main output falling out of<br>regulation. Main output at nominal set point.<br>Output Power: 6 kW<br>Output Power: 10 kW | -<br>- | -<br>- | 20<br>12 | ms<br>ms |
| Tac_acok_off           | Delay from AC loss to ACOK signal de-assertion (going<br>High).                                                                                | 20     | -      | 50       | ms       |
| TVreg_PWR_OK_OFF       | Hold up time - time output voltages stay within regulation after the loss of AC.                                                               | 100    | -      | -        | us       |
| Tpson#_Vreg            | Delay from PSON# asserted (pulled LOW) to output voltages being within regulation.                                                             | 5      | -      | 400      | ms       |
| Tpson#_PWR_OK_OFF      | Delay from PSON# going HIGH to PWR_OK deassertion.                                                                                             | -      | -      | 300      | ms       |
| Tpskill_OFF            | Delay from PSKILL going HIGH to main output turning off.                                                                                       | -      | -      | 1        | ms       |
| Tpskill_Vreg           | Delay from PSKILL deassertion (pulled LOW) to main output voltage being within regulation                                                      | 5      | -      | 400      | ms       |

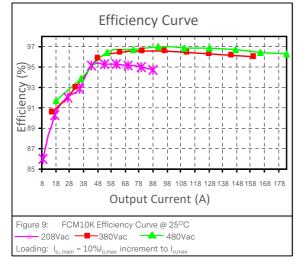




#### 2.5 System Timing Diagram

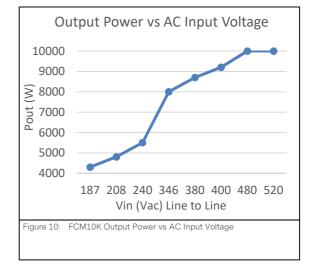




#### 2.6 FCM10K Performance Curves - Voltage Source Mode






#### 2.6 FCM10K Performance Curves - Voltage Source Mode











#### 2.7 Protection Function Specifications

#### Input Fuse

The FCM10K series is equipped with an internal non-user serviceable 20 A, 500 VAC fast acting fuse to protect against catastrophic failures.

#### Over Voltage Protection (OVP)

The FCM10K series power supply is internally protected against output overvoltage.

| Parameter        | Main Output                                                                                                                                                                                                             |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First level OVP  | <ul> <li>Tracking OVP</li> <li>Scales with output voltage</li> <li>Threshold should be 115% (+/- 2%) of voltage set-point</li> <li>Output can be reset/turned ON using PSON, PSKILL, MODBUS, and AC recycle.</li> </ul> |
| Second level OVP | <ul><li>Threshold should be 65V</li><li>Output can be reset/turned ON using PSON, PSKILL, MODBUS, and AC recycle.</li></ul>                                                                                             |

#### **Over Current Protection (OCP)**

The FCM10K series power supply is internally protected against output overcurrent.

| Parameter        | Main Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| First level OCP  | <ul> <li>Fixed setting at typical of 200A (109% of 183.5A)</li> <li>Output voltage droops down to 87.5% of Vout or 44V whichever comes first.</li> <li>Once the output voltage reaches, 87.5% of Vout or 44V, the unit detects it as a fault and the main output turns off.</li> <li>During voltage droop, if the output load was removed (No Load) expect a 5% - 115% overshoot on the main Output voltage.</li> <li>Main output will continue to do a slow 10-time retry (2s OFF, 10ms ON validation of Fault), if the output fault is still present then unit main o/p remains OFF.</li> <li>Output can be reset/turned ON using PSON, PSKILL, MODBUS, and AC recycle.</li> </ul> |
| Second level OCP | <ul> <li>Tracking with respect to maximum output current set</li> <li>Set at 120% of aximum output current set</li> <li>If current exceeds then immediate output shut down</li> <li>Main output will continue to do a slow 10-time retry (2s OFF, 10ms ON validation of Fault), if the output fault is still present then unit main O/P remains OFF.</li> <li>Output can be reset/turned ON using PSON, PSKILL, MODBUS, and AC recycle.</li> </ul>                                                                                                                                                                                                                                   |

#### Standby Output:

| Parameter      | Main Output                                                                                                                                                                                                                                                              |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5V Standby OCP | <ul> <li>OCP is 115%-140% of its full load current</li> <li>5V standby output will continue to do slow 10 time retry, if the output fault is still present then latch 5V stand by</li> <li>Can be reset / turned ON using PSON, PSKILL, MODBUS and AC recycle</li> </ul> |



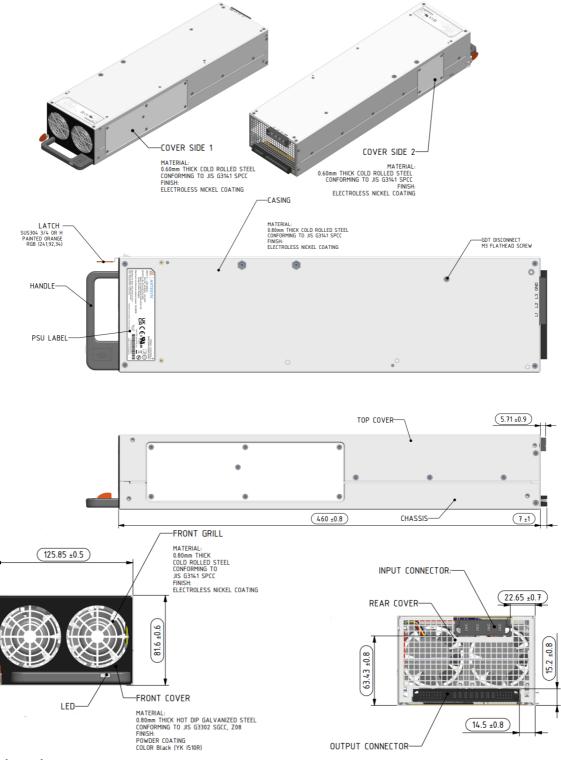
#### Short Circuit Protection (SCP)

The FCM10K series outputs are protected from continuous output shorted conditions (no damage or reliability issues).

| Parameter                 | Main Output                                                                                                                                                                                                                                                |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Main Output Short Circuit | <ul> <li>Immediate shutdown</li> <li>Main output will continue to do slow 10-time retry, if the output fault is still present then unit main o/p remains OFF</li> <li>Output can be reset/turned ON using PSON, PSKILL, MODBUS, and AC recycle.</li> </ul> |
| 5V Standby Short Circuit  | <ul><li>Immediate shutdown</li><li>Auto recover</li></ul>                                                                                                                                                                                                  |

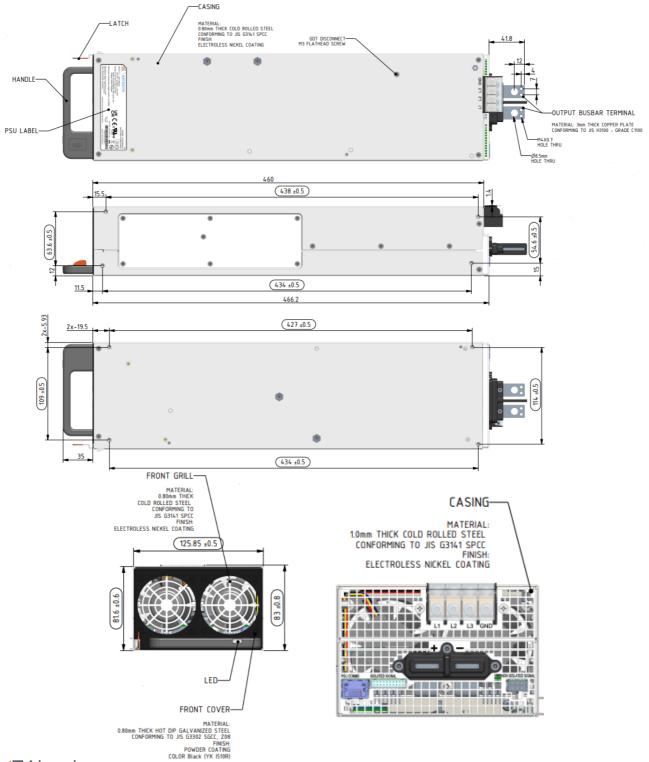
#### **Over Temperature Protection (OTP)**

The FCM10K series power supply is internally protected against over temperature conditions. When the OTP circuit is activated, the power supply will shut-off and auto-recover once the OTP condition is gone.


#### Line Protection (AC Input Fault)

| Parameter                                                                                 | Main Output                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wrong installation/connection of<br>L1 ,L2, L3 on the PSU AC input<br>connector or Shelf. | <ul> <li>Example is L1 of the 3 phase AC input is connected to L2 or L3 terminal of the power supply</li> <li>Power supply will not power up</li> </ul>                                                                                                                                                                                          |
| Loss of one AC input Phase                                                                | <ul><li>Power supply will shutdown</li><li>Power supply will recover when AC input goes back to operating range.</li></ul>                                                                                                                                                                                                                       |
| AC input Over Voltage                                                                     | <ul> <li>When line-to-line voltage exceeds 535Vac, power supply will shutdown</li> <li>Power supply will recover when AC input goes back to the nominal high line of 480Vac.</li> </ul>                                                                                                                                                          |
| AC input Under Voltage                                                                    | <ul> <li>Power supply shall maintain output regulation when AC input drops below the minimum AC input level of 187Vac for the given duration and output load below.</li> <li>The AC input drop can be at any one phase/line or all 3 phases.</li> <li>One full AC cycle with a load of 6kW</li> <li>Half AC cycle with a load of 10kW</li> </ul> |



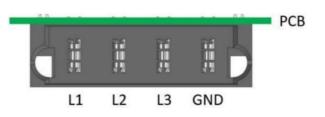

#### **3.1 Mechanical Outlines (-P) (unit: mm)**

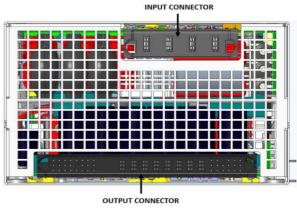
FCM10K: 81.6 mm (H) x 125.85 mm (W) x 460 mm (L)



#### 3.2 Mechanical Outlines (-T) (unit: mm)

FCM10K: 81.6 mm (H) x 125.85 mm (W) x 460 mm (L)




#### 3.3 Connector Definitions (FCM10KW-N-P)

#### Input Connector – J25

- L1 Line1
- L2 Line2
- L3 Line3
- GND Earth Ground
- Note 1- Three phase AC input using three wire and PE Note 2- Supports star or Delta three phase (no corner grounding)





Rear Panel

**Output Terminal** 

P2-P5 - Main Output (+)

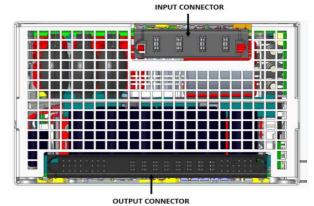
P6-P9 - Main Output Return (-)

#### Non-Isolated Signals

- C10 SYS\_GND
- C11 PSKILL
- C9 ISHARE\_RETURN
- C14 ISHARE
- B12 SHLF\_DET
- C13 PSU\_SYNC

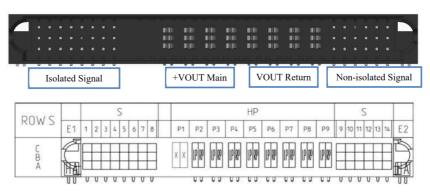
| Ç   |   | •  | -   | •  | с<br>е<br>е | •••• |    | : |  | erita<br>erita<br>erita |    | OTIDA<br>Didan<br>Didan<br>Dijan | BTNI<br>BTNI<br>BTNI<br>BTNI | WITHIT<br>WITHIT<br>WITHIT<br>WITHIT | USID<br>Data<br>Data<br>Data |    | NY DAT<br>Ny DAT<br>Ny Dat | NAT DATA<br>NAT DATA<br>NAT DATA<br>NAT DATA<br>NAT DATA | 0100<br>0100<br>0100<br>0100 | - |    | •    | :    |      | 1<br>•<br>•<br>• |       |
|-----|---|----|-----|----|-------------|------|----|---|--|-------------------------|----|----------------------------------|------------------------------|--------------------------------------|------------------------------|----|----------------------------|----------------------------------------------------------|------------------------------|---|----|------|------|------|------------------|-------|
| 0.0 | ] | so | lat | ed | Si          | gna  | al |   |  |                         | +1 | VOU                              | Г Ма                         | in                                   |                              | VC | DUT                        | Retu                                                     | rn                           | 1 | No | n-is | sola | ateo | 1 Si             | ignal |

| DOWS        |    |   |   |   | \$ | 5 |   |   |   | 1  |       |       |       | HP    |       |       |       |       |   |    | S  |      |      |    |
|-------------|----|---|---|---|----|---|---|---|---|----|-------|-------|-------|-------|-------|-------|-------|-------|---|----|----|------|------|----|
| ROW S       | E1 | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | P1 | P2    | P3    | P4    | P5    | P6    | P7    | P8    | P9    | 9 | 10 | 11 | 12 1 | 3 14 | E2 |
| C<br>B<br>A |    |   |   |   |    |   |   |   |   | XX | Lb Bb | LP RP | LP RP | Lb Bb | LP RP | LP RP | lb Bb | LP RP | E |    |    |      |      |    |


Output Connector



#### 3.3 Connector Definitions (FCM10KW-N-P)


#### **Isolated Signals**

- B2 5VSB\_GND
- A1 5VSB
- B6 RS485\_GND
- B31 V\_PROG
- A7 RS485\_ADDR0
- A8 GNDL
- C7 RS485\_ADDR1
- B1 ACOK#
- C8 RS485\_ADDR2
- C1 PWR\_OK#
- C5 RS485\_A\_EXT
- C3 PSON#
- C6 RS485\_B\_EXT
- C4 CC/CV\_MODE
- B8 PSU\_PRESENT
- A2 PSU\_SYNC\_ISO
- A3 ANALOG/DIGITAL\_MODE
- C2 I\_PROG
- A5 VPROG/IPROG\_GND
- B4 ALERT#



Rear Panel

Note 1 - To enable Vout trimming using external supply voltage, You need to short ANALOG/DIGITAL\_MODE pin to GNDL pin. Apply external voltage 0 to 10 V across V\_PROG pin and GNDL pin. No need to short ANALOG/ DIGITAL\_MODE pin to GNDL pin by default Vout trimming is thru RS485

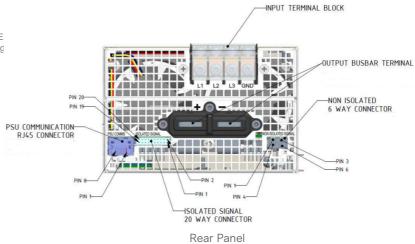


Output Connector Pin Diagram



#### 3.4 Connector Definitions (FCM10KW-N-T)

#### Input Connector


- L1 Line1
- L2 Line2
- L3 Line3
- GND Earth Ground

Note 1- Three phase AC input using three wire and PE Note 2- Supports star or Delta three phase(no corner g

#### **Output Terminal**

Main Output (+)

Main Output Return (-)



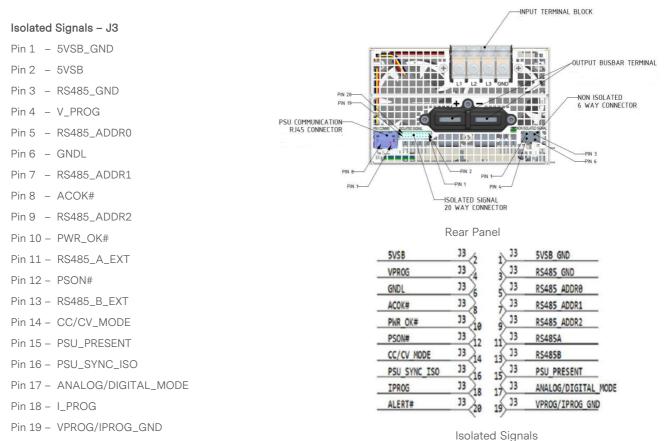
#### Non-Isolated Signals - J5

- Pin 1 SYS\_GND
- Pin 2 N/A
- Pin 3 ISHARE\_RETURN
- Pin 4 ISHARE
- Pin 5 SHLF\_DET
- Pin 6 PSU\_SYNC

| Communication Connector Signals – J2 | Communication | Connector | Signals – J2 |  |
|--------------------------------------|---------------|-----------|--------------|--|
|--------------------------------------|---------------|-----------|--------------|--|

- Pin 1 RS485A
- Pin 2 RS485B
- Pin 3 N/A
- Pin 4 N/A
- Pin 5 N/A
- Pin 6 N/A
- Pin 7 N/A
- Pin 8 RS485\_GND

| 35 /4 | 1 35                     | SYS GND                                                                                                                   |
|-------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 35    | \$ 35                    |                                                                                                                           |
| 35 6  | 3 35                     | ISHARE RETURN                                                                                                             |
|       | 35<br>35<br>35<br>5<br>6 | J5         4         1         J5           J5         5         2         J5           J5         6         3         J5 |


Non-isolated Signals

| 1 32  | RS485A    |       |
|-------|-----------|-------|
| 3 32  | RS485B    | R1    |
| Z 32  |           | 120R  |
| 32    |           | 0.25W |
| 32    |           |       |
| J2    |           |       |
| \$ 32 |           |       |
| 32    | RS485 GND |       |
| /     |           |       |

Communication Connector Signals



### 3.4 Connector Definitions (FCM10KW-N-T)

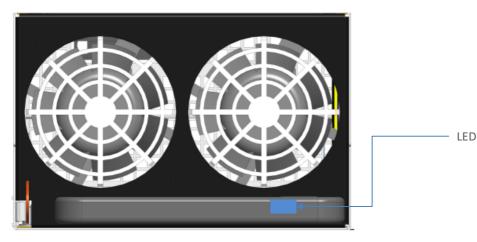


Pin 20 - ALERT#

Note 1 - To enable Vout trimming using external supply voltage, You need to short ANALOG/DIGITAL\_MODE pin to GNDL pin. Apply external voltage 0 to 10 V across V\_PROG pin and GNDL pin. No need to short ANALOG/DIGITAL\_MODE pin to GNDL pin by default Vout trimming is thru RS485



### 3.5 Power / Signal Mating Connectors and Pin Types


| Table 5. Mating Connectors for FCM10KW-N-P |                                  |                                  |  |  |  |  |  |  |
|--------------------------------------------|----------------------------------|----------------------------------|--|--|--|--|--|--|
| Reference                                  | On Power Supply                  | Mating Connector or Equivalent   |  |  |  |  |  |  |
| Input Connector                            | Amphenol-FCI: 10106262-4000006LF | Amphenol-FCI: 10128858-177LF     |  |  |  |  |  |  |
| Output Connector                           | Amphenol-FCI: 10127397-00H4014LF | Amphenol-FCI: 10127401-00H4014LF |  |  |  |  |  |  |

| Table 6. Mating Connectors for FCM10KW-N-T |                                                  |                                |  |  |  |  |  |  |
|--------------------------------------------|--------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| Reference                                  | On Power Supply                                  | Mating Connector or Equivalent |  |  |  |  |  |  |
| Input Connector                            | 764-001553-00XX                                  |                                |  |  |  |  |  |  |
| Output Terminal                            | 500-011906-00XX                                  |                                |  |  |  |  |  |  |
| Non-Isolated Signals                       | Molex: 43045-0602                                | Molex: 43025-0600              |  |  |  |  |  |  |
| Isolated Signals                           | Landwin: 2052P2000T-01<br>CVILUX: CI0120P1HDC-NH | Landwin: 2052S20 00            |  |  |  |  |  |  |
| Communication Connector Signals            | Molex: 43202-8819                                | FCC 68 Plugs                   |  |  |  |  |  |  |



#### **3.6 LED Indicator Definitions**

One bi-color (blue/amber) LED is provided on the power supply chassis at the end opposite to the input-output connectors. The status LED conditions is shown on the table below.



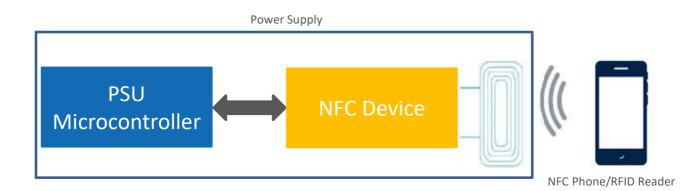
| Conditions                                                                                 | LED Status                             |  |  |  |  |
|--------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|
| AC present, main output ON, standby output ON                                              | Solid Blue                             |  |  |  |  |
| Standby mode                                                                               | Blinking Blue (1s ON; 1s OFF)          |  |  |  |  |
| Any kind of fault<br>(output over voltage/over current/over temperature/<br>short circuit) | Solid Amber                            |  |  |  |  |
| In system programming                                                                      | Fast Blinking Blue (0.5s ON; 0.5s OFF) |  |  |  |  |
| Wrong installation/connection of L1, L2 or L3 on the PSU AC input connector or Shelf       | Blinking Amber (1s ON; 1s OFF)         |  |  |  |  |
| AC input under voltage/over voltage/out of operating condition                             | Blinking Amber (3s ON; 3s OFF)         |  |  |  |  |



### 3.7 Weight

The FCM10K series weight is 5.3kg.




### SECTION 4 NFC TAG SPECIFICATIONS

#### NFC Tag Interface (FCM10KW Series)

The power supply comes with a Passive NFC tag device located on its handle. Users can read and configure the power supply parameters even if the power supply is not powered. As shown on the diagram an NFC Phone or RFID reader device will be able to read and access the NFC Tag.



As shown on the diagram an NFC Phone or RFID reader device will be able to read and access the NFC Tag using suitable application developed by AEI.



#### 5.1 EMC Immunity

FCM10K series power supply is designed to meet the following EMC immunity specifications.

| Table 7. Environmental Specifications              |                                                                |                                                                                                  |                       |  |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| Test Items                                         | Standard                                                       | Test Level                                                                                       | Criteria <sup>1</sup> |  |  |  |  |
| Conducted Emissions                                | CISPR 32/EN 55032                                              | Class B. 150k to 30MHz                                                                           | 6dB Margin, average   |  |  |  |  |
| Radiated Emissions                                 | d Emissions CISPR 32/EN 55032, FCC CFR 47 Part 15<br>Subpart B |                                                                                                  | 6dB Margin, average   |  |  |  |  |
| Harmonic Current Emissions                         | ic Current Emissions EN 61000-3-2                              |                                                                                                  | -                     |  |  |  |  |
| Voltage Fluctuations IEC 61000-3-3                 |                                                                | -                                                                                                | -                     |  |  |  |  |
| Electro Static Discharge<br>(ESD) Immunity         | EN/IEC 61000-4-2                                               | 8kV contact, 15kV air<br>6kV contact, 8kV air                                                    | A<br>A                |  |  |  |  |
| Radiated RF EM Fields<br>Susceptibility            | EN/IEC 61000-4-3                                               | 80MHz-1GHz, Leval 3 (10V/m)                                                                      | А                     |  |  |  |  |
| Electrical Fast Transients<br>(EFT) / Bursts       | EN/IEC 61000-1-1                                               |                                                                                                  | A<br>B                |  |  |  |  |
| Surges - Line to Line (DM)<br>and Line to GND (CM) | EN/IEC 61000-4-5<br>IEEE C62.41                                | 2kV DM, 4kV CM<br>2kV DM, 2kV CM                                                                 | A<br>A                |  |  |  |  |
| Conducted Immunity                                 | EN/IEC 61000-4-6                                               | 150kHz-80MHz, Leval 3 (10V/m)                                                                    | А                     |  |  |  |  |
| Power Frequency Magnetic<br>Field Immunity         | EN 61000-4-8                                                   | 50kHz, Level 3 (10A/m)                                                                           | А                     |  |  |  |  |
| Voltage Dips and<br>Interruptions                  | IEC 61000-4-11                                                 | 10ms, >95% Reducation<br>500ms, >30% Reducation<br>5s, >95% Reducation<br>500ms, >95% Reducation | A<br>A<br>C<br>C      |  |  |  |  |

Note 1 - Performance criteria of EN61000-4-X standards as defined by EN55035. According to the standards, performance criteria are defined as following:

Performance criterion A: During and after the test, no degradation of performance or loss of function is allowed below a minimum performance level in the EUT specifications.

Performance criterion B: During the test, temporary degradation of performance is allowed which is selfrecoverable, without change in operating state. After the application of the disturbance, no degradation of performance or loss of function is allowed.

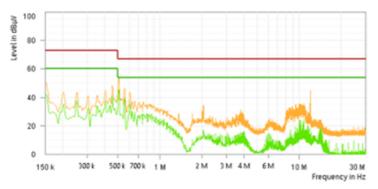
Performance criterion C: Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user. A reboot or re-start is allowed.



#### 5.2 Safety Certifications

The FCM10K series are intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a standard alone product.

| Table 8. Safety Certifications for FCM10K Series Power Supply System |        |                                           |  |  |  |  |  |  |
|----------------------------------------------------------------------|--------|-------------------------------------------|--|--|--|--|--|--|
| Standard                                                             | Agency | Description                               |  |  |  |  |  |  |
| UL 62368-1, 3 <sup>rd</sup> Ed Recognized                            | UL     | US                                        |  |  |  |  |  |  |
| CAN/CSA C22.2 No. 62368-1:19, 3rd Ed                                 |        | Canada Requirements                       |  |  |  |  |  |  |
| EN IEC 62368-1: 2020/A11:2020                                        | TUV    | European Requirements                     |  |  |  |  |  |  |
| IEC 62368-1: 2018 3rd Edition                                        |        | International Electrotechnical Commission |  |  |  |  |  |  |
| CE (LVD + RoHS), EN 62368-1 3 <sup>rd</sup> Edition                  |        | European Requirements                     |  |  |  |  |  |  |
| CB Certifications and Report                                         |        | All CENELEC Countries                     |  |  |  |  |  |  |




#### 5.3 EMI Emissions

The FCM10K series has been designed to comply with the Class A limits of EMI requirements of EN55032 for emissions and relevant sections of EN61000 (IEC 61000) for immunity. The unit is tested at 10000 W load.

#### **Conducted Emissions**

The applicable standard for conducted emissions is EN55032. Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the supply fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature.



The FCM10K series has internal EMI filters to ensure the convertors' conducted EMI levels comply with EN55032 Class A limits. The EMI measurements are performed with resistive loads at maximum rated loading.

Sample of EN55032 Conducted EMI Measurement at 480 Vac three phase input.

Conducted EMI emissions specifications of the FCM10K series power system:

| Parameter                   | Model | Symbol | Min | Тур | Max | Unit |
|-----------------------------|-------|--------|-----|-----|-----|------|
| FCC Part 15, class A        | All   | Margin | 6   | -   | -   | dB   |
| CISPR 32 (EN55032), class A | All   | Margin | 6   | -   | -   | dB   |



#### **Radiated Emissions**

Unlike conducted EMI, radiated EMI performance in a system environment may differ drastically from that in a stand-alone power supply. The shielding effect provided by the system enclosure may bring the EMI level from Class A to Class B. It is thus recommended that radiated EMI be evaluated in a system environment. The applicable standard is EN55032 Class A. Testing ac-dc convertors as a stand-alone component to the exact requirements of EN55032 can be difficult, because the standard calls for 1 m leads to be attached to the input and outputs and aligned such as to maximize the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few AC-DC convertors could pass. However, the standard also states that an attempt should be made to maximize the disturbance consistent with the typical application by varying the configuration of the test sample.



#### **5.4 Operating Temperature**

The FCM10K series power supplies can start and operate within the stated specifications at an ambient temperature from -40°C to 50°C under all load conditions with an internal fan (full performance). Above 50°C to 70°C, the output power will be derated linearly. The FCM10K series power supplies are able to start at -40°C rated full load.

#### 5.5 Forced Air Cooling

The FCM10K series power supplies will operate with forced air. Fan noise 63dB with 60% load at 30°C. The fan speed is internally controlled by the PSU and will vary depending on its internal thermal sense circuit. The worst case fan noise will not exceed 75 dBA (average).

| Ambient Temp | Loading Condition | Fan Noise |  |
|--------------|-------------------|-----------|--|
| ≤ 30°C       | 60%               | >63 dB    |  |

Note: To aide in dust control, fans will be turned off when the main output is off.



#### 5.6 Storage Temperature

The FCM10K series can be stored or shipped at temperatures between -40°C to +85°C.

#### 5.7 Altitude

The FCM10K series will operate within specifications at altitudes up to 9,842.52 feet (3,000 meters) above sea level. The power supply shall not be damaged when stored at altitudes of up to 30,000 feet (9,144 meters) above sea level.

#### 5.8 Humidity

The FCM10K series will operate within specifications when subjected to a relative humidity from 20% to 90% non-condensing. The FCM10K series can be stored in a relative humidity from 10% to 95% non-condensing.

#### 5.9 Vibration

The FCM10K series will pass the following vibration specifications:

| Acceleration | 1.9                           |                | gRMS        |  |
|--------------|-------------------------------|----------------|-------------|--|
| Duration     | 30                            |                | Mins        |  |
| Direction    | 3 mutually perpendicular axis |                |             |  |
|              | FREQ (Hz)                     | SLOPE (db/oct) | PSD (g²/Hz) |  |
| PSD Profile  | 5                             | /              | 0.01        |  |
| FSD FIOINE   | 200                           | /              | 0.01        |  |
|              | 500                           | /              | 0.003       |  |

Non-Operating Random Vibration (Class I Acceleration Specification)

Non-Operating Random Vibration (Class II Acceleration Specification)

| Acceleration | 3.8                           |                | gRMS        |  |
|--------------|-------------------------------|----------------|-------------|--|
| Duration     | 30                            |                | Mins        |  |
| Direction    | 3 mutually perpendicular axis |                |             |  |
|              | FREQ (Hz)                     | SLOPE (db/oct) | PSD (g²/Hz) |  |
|              | 5                             | /              | 0.052       |  |
| PSD Profile  | 200                           | /              | 0.052       |  |
|              | 500                           | /              | 0.003       |  |



| Acceleration | 0.71                          |                | gRMS        |
|--------------|-------------------------------|----------------|-------------|
| Duration     | 30                            |                | Mins        |
| Direction    | 3 mutually perpendicular axis |                |             |
|              | FREQ (Hz)                     | SLOPE (db/oct) | PSD (g²/Hz) |
|              | 5                             | /              | 0.000229    |
| PSD Profile  | 30                            | /              | 0.0021      |
|              | 200                           | /              | 0.0021      |
|              | 500                           | /              | 0.000054    |

Operating Random Vibration (Class I Acceleration Specification)

Operating Random Vibration (Class II Acceleration Specification)

| Acceleration | 2.4                           |                | gRMS        |  |
|--------------|-------------------------------|----------------|-------------|--|
| Duration     | 30                            |                | Mins        |  |
| Direction    | 3 mutually perpendicular axis |                |             |  |
|              | FREQ (Hz)                     | SLOPE (db/oct) | PSD (g²/Hz) |  |
|              | 5                             | /              | 0.00046     |  |
| PSD Profile  | 30                            | /              | 0.0052      |  |
|              | 200                           | /              | 0.0052      |  |
|              | 500                           | /              | 0.0001      |  |



#### 5.10 Shock

The FCM10K series will pass the following shock specifications:

Operating Half-Sine Shock

| Acceleration    | 30                                | G  |
|-----------------|-----------------------------------|----|
| Duration        | 11                                | ms |
| Pulse           | Half-Sine                         |    |
| Number of Shock | 3 shocks for each of the six axes |    |

#### Non- operating Half-Sine Shock

| Acceleration    | 40                                | G  |
|-----------------|-----------------------------------|----|
| Duration        | 15                                | ms |
| Pulse           | Half-Sine                         |    |
| Number of Shock | 3 shocks for each of the six axes |    |



### 6.1 Input Terminal

This connector supplies the AC Mains to the FCM10K series power supply.

- L1 Line1
- L2 Line2
- L3 Line3
- GND Earth Ground

| PSU Input Voltage |                |                                                   |  |  |
|-------------------|----------------|---------------------------------------------------|--|--|
| Nominal           | Range          | Remarks                                           |  |  |
| 208 Vac           | 187 to 229 VAC | Derived from 3 phase 208 VAC Mains (Line-to-Line) |  |  |
| 240 Vac           | 216 to 264 VAC | Derived from 3 phase 240 VAC Mains (Line-to-Line) |  |  |
| 346 Vac           | 311 to 381 VAC | Derived from 3 phase 346 VAC Mains (Line-to-Line) |  |  |
| 380 Vac           | 342 to 418 VAC | Derived from 3 phase 380 VAC Mains (Line-to-Line) |  |  |
| 400 Vac           | 360 to 480 VAC | Derived from 3 phase 400 VAC Mains (Line-to-Line) |  |  |
| 480 Vac           | 432 to 528 VAC | Derived from 3 phase 480 VAC Mains (Line-to-Line) |  |  |

### 6.2 Output Terminal (-P)

This connector provides the main output for the FCM10K series power supply.

P2-P5 - Main Output (+)

P6-P9 - Main Output Return (-)

### 6.3 Output Terminal (-T)

This connector provides the main output for the FCM10K series power supply.

Main Output (+)

Main Output Return (-)



#### 6.4 Isolated Signals

#### RS485\_A\_EXT (C5, Pin 11 of J3)

Communication lines for RS485 Modbus Protocol. The 120 Ohm terminating resistor is not available inside the PSU and should be added externally.

#### RS485\_B\_EXT (C6, Pin 13 of J3)

Communication lines for RS485 Modbus Protocol. The 120 Ohm terminating resistor is not available inside the PSU and should be added externally.

#### RS485 RTN (B6, Pin 3 of J3)

Communication lines RTN for RS485 Modbus Protocol.

#### RS485\_ADDR0 # (A7, Pin 5 of J3)

Communication line address. Internally pulled up to 3V\_ISO via 10kOhm resistor. External interface: Logic Low: short address line to GNDL Logic High: float address line or use open collector.

#### RS485\_ADDR1 # (C7, Pin 7 of J3)

Communication line address. Internally pulled up to 3V\_ISO via 10kOhm resistor. External interface: Logic Low: short address line to GNDL Logic High: float address line or use open collector.

#### RS485\_ADDR2 # (C8, Pin 9 of J3)

Communication line address. Internally pulled up to 3V\_ISO via 10kOhm resistor. External interface: Logic Low: short address line to GNDL Logic High: float address line or use open collector.

#### ACOK# (B1, Pin 8 of J3)

Active low signal. Indicates that the input supply voltage is within allowable limits and the power supply can be used and turned on. Internally pulled up to 3V\_ISO via 10kOhm resistor.

#### PWR\_OK# (C1, Pin 10 of J3)

Active low signal. Indicates that the main output is within the regulation band. Internally pulled up to 3V\_ISO via 10kOhm resistor.



#### ALERT# (B4, Pin 20 of J3)

Active low signal. Indicates that there is a fault present in the power supply. Internally pulled up to 3V\_ISO via 10kOhm resistor.

#### PSON# (C3, Pin 12 of J3)

Active low signal as default. Controls the main output of the power supply on and off. Internally pulled up to 3V\_ISO via 10kOhm resistor.

Configurable to active high to allow power supply to operate without waiting for an external switch from the user as a stand-alone power supply.

Logic Low: short PSON# pin to GNDL

Logic High: float PSON# or use open collector

#### V\_PROG (B3, Pin 4 of J3)

An analog programming command that accepts a DC voltage up to 10V in order to adjust the output voltage set points when the power supply is in voltage source mode operation.

0-10V programming range ( default range).

0-5V programming range (needs H/W or software modification).

#### I \_PROG (C2, Pin 18 of J3)

An analog programming command that accepts a DC voltage up to 10V in order to adjust the output current set points when the power supply is in current source mode operation.

0-10V programming range ( default range).

0-5V programming range (needs H/W or software modification).

#### CC/CV\_MODE (C4, Pin 14 of J3)

Sets the power supply to current source mode or voltage source operation. Shorting to isolated return (ISO\_RTN) will set the power supply to the current source mode. The open pin can be set to voltage source mode. Internally pulled up to 3V\_ISO via 10kOhm resistor.

#### PSU\_PRESENT (B8, Pin 15 of J3)

Used by the shelf to detect the presence of power supply inside the shelf whether operating or not. Internally shorted to isolated signal return ground.

#### GNDL (A8, Pin 6 of J3)

The isolated signal RTN (or ground).

#### 5VSB\_GND# (B2, Pin 1 of J3)

This signal is the RTN of 5V standby output.

#### 5VSB# (A1, Pin 2 of J3)

This pin is the standby output of the power supply rated 5V/2A.



#### PSKILL\_ISO (B5)

This signal has a short pin in the output connector. It functions as the first break/ last mate. This enables or disables the main output of the power supply. When this signal is shorted to ISO\_RTN by the system, the main output shall be enabled. The signal can source a maximum of 1mA in this state. When this signal is opened by the power supply removal from the system, the main output will shut down within TBA us.

#### ANALOG/DIGITAL\_MODE (A3, Pin 17 of J3)

Set the method of Vout or lout trimming.

- Pulled to GNDL will enable Vout and lout trimming via analog (V\_PROG and I\_PROG)
- Open will enable Vout and lout trimming via digital command (RS485).

Internally pulled up to 3V\_ISO via 10kOhm resistor.

#### VPROG/IPROG\_GND (A5, Pin 19 of J3)

Return signal for VPROG and IPROG



#### 6.5 Non- Isolated Signals

#### PSKILL (C11)

This signal has short pin in the output connector. It functions as the first break/ last mate. This enables or disables the main output of the power supply. When this signal is shorted to SYS\_GND by the system, the main output shall be enabled. The signal can source a maximum of 1mA in this state. When this signal is opened by the power supply removal from the system, the main output will shut down within TBA us.

It should be configurable to active low to allow the power supply to operate without waiting for an external switch from the user as a stand-alone power supply

#### ISHARE (C14, Pin 4 of J5)

Provides active current sharing feature for main output using single wire loop signal connection. This signal should be tied with the same signal of other the power supply intended to do current sharing. Short trace length with a good ground (SYS\_GND) shield is recommended for better performance on the system back plane.

#### ISHARE\_RETURN (C9, Pin 3 of J5)

This signal is the RTN of ISHARE. Same reference ground for main output.

#### SYS\_GND (C10, Pin 1 of J5)

Non-isolated signal return (or ground). Same reference ground for the main output.

#### PSU\_SYNC (C13, Pin 6 of J5)

This signal allows multiple power supplies in parallel to synchronize start-up. This signal is connected together in the backplane/ shelf. Low on this pin (< 0.7V) disables the power supply to start up high on this pin (3V) enables the power supply to start up. Internally pulled up to 3V via 10kOhm resistor.



### SECTION 7 COMMUNICATION BUS DESCRIPTIONS

### FRU (EEPROM) Data

| The FCM10K serie | es uses 1 page of E | EPROM for FRU purpose. A page of EEPROM contains up to 118 byte-sized data locations.                    |
|------------------|---------------------|----------------------------------------------------------------------------------------------------------|
| Where:           | OFFSET              | -The OFFSET denotes the address in decimal format of a particular data byte within FCM10K Series EEPROM. |
|                  | VALUE               | -The VALUE details data written to a particular memory location of the EEPROM.                           |
|                  | DEFINITION          | -The contents DEFINITION refers to the definition of a particular data byte.                             |

#### FCM10K Series FRU (EEPROM) Data:

| FCM10K Series FRU (EEPROM<br>OFFSET                                                                                  |                                                                                                                                  | DEFINITION                                                                                                                                                                | SPEC                                                                                                                                | VALUE                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| (DEC)                                                                                                                | (HEX)                                                                                                                            | (REMARKS)                                                                                                                                                                 | (DEC)                                                                                                                               | (HEX)                                                                                                                                           |
| 0<br>1<br>2<br>3                                                                                                     | 00<br>01<br>02<br>03                                                                                                             | PSU_MODEL_ID<br>"S"= 53h<br>"0" = 30h<br>"7" = 37h<br>"6" = 36h                                                                                                           | 83<br>48<br>55<br>54                                                                                                                | 53<br>30<br>37<br>36                                                                                                                            |
| 4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23       | 04<br>05<br>06<br>07<br>08<br>09<br>0A<br>0B<br>0C<br>0D<br>0C<br>0D<br>0E<br>0F<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17 | PSU_MFR_MODEL<br>"F" = 46h<br>"C" = 43h<br>"M" = 4Dh<br>"1" = 31h<br>"0" = 30h<br>"K" = 4Bh<br>"W" = 57h<br>"-" = 2Dh<br>"N" = 50h<br>"-" = 2Dh<br>"P" = 50h ("T" = 54h ) | 70<br>67<br>77<br>49<br>48<br>75<br>87<br>45<br>80/84<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | 46<br>43<br>4D<br>31<br>30<br>4B<br>57<br>2D<br>4E<br>2D<br>50/54<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| 24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43 | 18<br>19<br>1A<br>1B<br>1C<br>1D<br>1E<br>1F<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>2A<br>2B             | PSU_MFR_LOCATION<br>"L" = 4Ch<br>"A" = 41h<br>"G" = 47h<br>"U" = 55h<br>"N" = 4Eh<br>"A" = 41h                                                                            | 76<br>65<br>71<br>85<br>78<br>65<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32                      | 4C<br>41<br>47<br>55<br>4E<br>41<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                  |

### SECTION 7 COMMUNICATION BUS DESCRIPTIONS

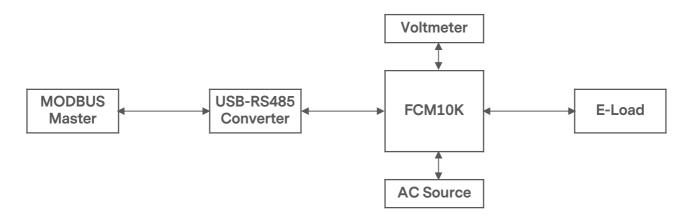
#### FCM10K Series FRU (EEPROM) Data:

|                                                                                                                                                                            | S FRU (EEPROM<br>SET                                                                                                                                                                                                 | DEFINITION                                                                                                                                                  | SPEC                                                                                                                                                                  | VALUE                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (DEC)                                                                                                                                                                      | (HEX)                                                                                                                                                                                                                | (REMARKS)                                                                                                                                                   | (DEC)                                                                                                                                                                 | (HEX)                                                                                                                                                          |
| $\begin{array}{c} 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ \end{array}$ | 2C<br>2D<br>2E<br>2F<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>3A<br>39<br>3A<br>39<br>3A<br>39<br>3A<br>39<br>3A<br>3B<br>3C<br>3D<br>3E<br>3F<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47 | PSU_MFR_DATE<br>"W" = 57h<br>"V" = 57h<br>"Y" = 2Fh<br>"Y" = 59h<br>"Y" = 59h<br>"Y" = 59h<br>"s" = 73h<br>"s" = 73h<br>"s" = 73h<br>"s" = 73h<br>"s" = 73h | 87<br>87<br>47<br>89<br>89<br>89<br>32<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 | 57<br>57<br>2F<br>59<br>59<br>59<br>20<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |
| 72<br>73<br>74<br>75                                                                                                                                                       | 48<br>49<br>4A<br>4B                                                                                                                                                                                                 | PSU_HW_REVISION<br>"Z" = 5Ah<br>"Z" = 5Ah<br>"Z" = 5Ah                                                                                                      | 90<br>90<br>90<br>32                                                                                                                                                  | 5A<br>5A<br>5A<br>20                                                                                                                                           |
| 76<br>77<br>78<br>79<br>80<br>81<br>82<br>83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99                               | 4C<br>4D<br>4E<br>4F<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>5A<br>55<br>50<br>58<br>50<br>5E<br>5F<br>60<br>61<br>62<br>63                                                                   | PSU_FW_REVISION                                                                                                                                             | 32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>3                                                                                       | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2                                                                                |

### SECTION 7 COMMUNICATION BUS DESCRIPTIONS

#### FCM10K Series FRU (EEPROM) Data:

| OF    | =SET  | DEFINITION     | SPEC  | VALUE |
|-------|-------|----------------|-------|-------|
| (DEC) | (HEX) | (REMARKS)      | (DEC) | (HEX) |
|       |       | Reserve        |       |       |
| 100   | 64    |                | XX    | XX    |
| 101   | 65    |                | XX    | XX    |
| 102   | 66    |                | XX    | XX    |
| 103   | 67    |                | XX    | XX    |
| 104   | 68    |                | XX    | XX    |
| 105   | 69    |                | XX    | XX    |
| 106   | 6A    |                | XX    | XX    |
| 107   | 6B    |                | XX    | XX    |
| 108   | 6C    |                | XX    | XX    |
| 109   | 6D    |                | XX    | XX    |
| 110   | 6E    |                | XX    | XX    |
| 111   | 6F    |                | XX    | XX    |
|       |       | PSU_CALIB_DATE |       |       |
| 112   | 70    | "Y" = 59h      | 89    | 59    |
| 113   | 71    | "Y" = 59h      | 89    | 59    |
| 114   | 72    | "M" = 4Dh      | 77    | 4D    |
| 115   | 73    | "M" = 4Dh      | 77    | 4D    |
| 116   | 74    | "D" = 44h      | 68    | 44    |
| 117   | 75    | "D" = 44h      | 68    | 44    |




The FCM10K series is compliant with the MODBUS application protocol for monitoring and control of the power supply via the RS485 communication port.

### 8.1 FCM10K Series MODBUS General Instructions

#### **Equipment Setup**

The following is typical RS485 MODBUS communication setup:



#### **Serial Configuration**

The Baud Rate (Data Rate) can be set by the MODBUS register (0xAB).

| Settings          | Serial Port Settings                           |
|-------------------|------------------------------------------------|
| oettings          | Comport: COM5                                  |
| 115200 (Default)  | Baud Rate: 115200 -                            |
| 110200 (Dolidali) | Data Bits: 8 🗸                                 |
| 8                 | Parity: Even V                                 |
|                   | Stop Bits: One 🗸                               |
| Even              | Write Timeout: 1000 🖨 mSec                     |
|                   | Read Timeout: 1000 🖨 mSec                      |
| 1                 | Send/Response Interval: 50 🖨 mSec              |
|                   | Settings<br>115200 (Default)<br>8<br>Even<br>1 |

The Data Rate is configurable using the Baud Rate Config Register (0xAB).

| Register Address 0xAB |                         |  |  |  |  |  |
|-----------------------|-------------------------|--|--|--|--|--|
| Value (Hex)           | Baud Rate Configuration |  |  |  |  |  |
| 0                     | 9600                    |  |  |  |  |  |
| 1                     | 19200                   |  |  |  |  |  |
| 2                     | 38400                   |  |  |  |  |  |
| 3                     | 115200 (Default)        |  |  |  |  |  |



### **Device Addressing**

The default device base address is 0x0C and the Default Modbus Address configuration is 0xC0. Note: The 0x00 Modbus address is not supported.

| Register Address 0xAA |             |             |             |                   |  |  |  |
|-----------------------|-------------|-------------|-------------|-------------------|--|--|--|
| DEVICE_BASE_ADDRESS   | RS485_ADDR2 | RS485_ADDR1 | RS485_ADDR0 | PSU Address (Hex) |  |  |  |
| 0x00                  | 0           | 0           | 1           | 0x01              |  |  |  |
| 0x00                  | 0           | 1           | 0           | 0x02              |  |  |  |
| 0x00                  | 0           | 1           | 1           | 0x03              |  |  |  |
| 0×00                  | 1           | 0           | 0           | 0x04              |  |  |  |
| 0x00                  | 1           | 0           | 1           | 0x05              |  |  |  |
| 0x00                  | 1           | 1           | 0           | 0x06              |  |  |  |
| 0x00                  | 1           | 1           | 1           | 0x07              |  |  |  |
| 0x01                  | 0           | 0           | 1           | 0x10              |  |  |  |
| 0x01                  | 0           | 0           | 0           | 0x11              |  |  |  |
| 0x01                  | 0           | 1           | 1           | 0x12              |  |  |  |
| 0x01                  | 0           | 1           | 0           | 0x13              |  |  |  |
| 0×01                  | 1           | 0           | 1           | 0x14              |  |  |  |
| 0×01                  | 1           | 0           | 0           | 0x15              |  |  |  |
| 0x01                  | 1           | 1           | 1           | 0x16              |  |  |  |
| 0×01                  | 1           | 1           | 0           | 0x17              |  |  |  |
| 0x02                  | 0           | 0           | 1           | 0x20              |  |  |  |
| 0x02                  | 0           | 0           | 0           | 0x21              |  |  |  |
| 0x02                  | 0           | 1           | 1           | 0x22              |  |  |  |
| 0x02                  | 0           | 1           | 0           | 0x23              |  |  |  |
| 0x02                  | 1           | 0           | 1           | 0x24              |  |  |  |
| 0x02                  | 1           | 0           | 0           | 0x25              |  |  |  |
| 0x02                  | 1           | 1           | 1           | 0x26              |  |  |  |
| 0x02                  | 1           | 1           | 0           | 0x27              |  |  |  |
| 0x03                  | 0           | 0           | 1           | 0x30              |  |  |  |
| 0x03                  | 0           | 0           | 0           | 0x31              |  |  |  |
| 0x03                  | 0           | 1           | 1           | 0x32              |  |  |  |
| 0x03                  | 0           | 1           | 0           | 0x33              |  |  |  |
| 0x03                  | 1           | 0           | 1           | 0x34              |  |  |  |
| 0x03                  | 1           | 0           | 0           | 0x35              |  |  |  |
| 0x03                  | 1           | 1           | 1           | 0x36              |  |  |  |
| 0x03                  | 1           | 1           | 0           | 0x37              |  |  |  |



#### **Device Addressing**

|                     | Register Address 0xAA |             |             |                   |  |  |  |  |
|---------------------|-----------------------|-------------|-------------|-------------------|--|--|--|--|
| DEVICE_BASE_ADDRESS | RS485_ADDR2           | RS485_ADDR1 | RS485_ADDR0 | PSU Address (Hex) |  |  |  |  |
|                     |                       |             |             |                   |  |  |  |  |
| 0×0F                | 0                     | 0           | 1           | 0xF0              |  |  |  |  |
| 0x0F                | 0                     | 0           | 0           | 0xF1              |  |  |  |  |
| 0×0F                | 0                     | 1           | 1           | 0xF2              |  |  |  |  |
| 0x0F                | 0                     | 1           | 0           | 0xF3              |  |  |  |  |
| 0×0F                | 1                     | 0           | 1           | 0xF4              |  |  |  |  |
| 0x0F                | 1                     | 0           | 0           | 0xF5              |  |  |  |  |
| 0x0F                | 1                     | 1           | 1           | 0xF6              |  |  |  |  |
| 0x0F                | 1                     | 1           | 0           | 0xF7              |  |  |  |  |

#### **CRC Checking**

The PSU includes an error-checking field that is based on a Cyclical Redundancy Checking (CRC) method performed on the message contents. Details are found in "MODBUS over Serial Line Specification and Implementation Guide" V1.02 document section 2.5.1.2 CRC Checking.

#### **Error Handling**

The PSU will report MODBUS error codes if the request command is invalid. Details are found in "MODBUS over Serial Line Specification and Implementation Guide" V1.02 document section 7 MODBUS Exception Responses.

| Error Code | Description          |  |  |
|------------|----------------------|--|--|
| 01         | Illegal Function     |  |  |
| 02         | Illegal Data Address |  |  |
| 03         | Illegal Data Value   |  |  |
| 04         | Slave Device Failure |  |  |



### **Reporting Accuracy**

| Parameter | Reporting      | Hex     |                           |                                             | Accuracy Range      |                     |  |
|-----------|----------------|---------|---------------------------|---------------------------------------------|---------------------|---------------------|--|
| Туре      | Function       | Address | Command Name              | 0% to 20% Load                              | 20% to 100%<br>Load | 30% to 100%<br>Load |  |
| Output    | Output Voltage | 0xB0    | PSU_OUTPUT_VOLTAGE ±2%    |                                             | ±:                  | ±2%                 |  |
| Output    | Output Current | 0xB1    | PSU_OUTPUT_CURRENT        | Fixed±3% of<br>rated max output<br>current  | ±                   | 3%                  |  |
| Output    | Output Power   | 0xB2    | PSU_OUTPUT_POWER          | Fixed±5% of<br>rated<br>max output power    | ±                   | 5%                  |  |
| Input     | Input Voltage  | 0xB4    | PSU_INPUT_VOLTAGE_A       | ± 5%                                        | ±:                  | 5%                  |  |
| Input     | Input Voltage  | 0xD7    | PSU_INPUT_VOLTAGE_B       | ± 5%                                        | ±:                  | 5%                  |  |
| Input     | Input Voltage  | 0xD8    | PSU_INPUT_VOLTAGE_C       | ± 5%                                        | ±;                  | 5%                  |  |
| Input     | Input Current  | 0xB5    | PSU_INPUT_CURRENT_A       | Fixed ± 7% of<br>rated max input<br>current | ±15%                | ±10%                |  |
| Input     | Input Current  | 0xDC    | PSU_INPUT_CURRENT_B       | Fixed ± 7% of<br>rated max input<br>current | ±15%                | ±10%                |  |
| Input     | Input Current  | 0xDD    | PSU_INPUT_CURRENT_C       | Fixed ± 7% of rated max input current       | ±15%                | ±10%                |  |
| Input     | Input Power    | 0xB6    | PSU_INPUT_POWER_<br>TOTAL | Fixed ± 7% of<br>rated max input<br>current | ±15%                | ±10%                |  |
| Input     | Input Power    | 0xDE    | PSU_INPUT_POWER_A         | Fixed ± 7% of<br>rated max input<br>current | ±15%                | ±10%                |  |
| Input     | Input Power    | 0xDF    | PSU_INPUT_POWER_B         | Fixed ± 7% of<br>rated max input<br>current | ±15%                | ±10%                |  |
| Input     | Input Power    | 0xE0    | PSU_INPUT_POWER_C         | Fixed ± 7% of<br>rated max input<br>current | ±15%                | ±10%                |  |
| Thermal   | Temperature    | 0xB7    | PSU_TEMP1-PRI             |                                             | ±5°C                |                     |  |
| Thermal   | Temperature    | 0xB8    | PSU_TEMP2- SEC            |                                             | ±5°C                |                     |  |
| Thermal   | Temperature    | 0xB9    | PSU_TEMP3- BUCK           |                                             | ±5°C                |                     |  |
| Thermal   | Temperature    | 0xBA    | PSU_TEMP4- AMBIENT        |                                             | ±5°C                |                     |  |
| Thermal   | Temperature    | 0xBB    | PSU_TEMP5-NFC             |                                             | $\pm 5^{\circ}C$    |                     |  |



### 8.2 The FCM10K Series Supported Modbus Command List

This section summarizes all Modbus Registers that are supported which can be read by either Read Holding Register (function code 03h) or Read Input Register (function code 04h), and can be write by Write Single Register (function code 06h).

| Command<br>Code | Command Name                              | Default Value | Access<br>Type | Data Bytes | Data<br>Format | Description                                                                       |
|-----------------|-------------------------------------------|---------------|----------------|------------|----------------|-----------------------------------------------------------------------------------|
|                 | STATUS_WORD                               | -             | R              | 2          | Bitmapped      | Summary of the unit's fault condition                                             |
|                 | b15 - VOUT                                |               |                |            |                | Asserts when any of the bit is set<br>in STATUS_VOUT register                     |
|                 | b14 - IOUT                                |               |                |            |                | Asserts when any of the bit is set in STATUS_IOUT register                        |
|                 | b13 - INPUT                               |               |                |            |                | Asserts when any of the bit is set in STATUS_INPUT register                       |
| 70h             | b12 - MFR_SPECIFIC                        |               |                |            |                | Asserts when any of the bit is set<br>in STATUS_MFR_SPECIFIC<br>register          |
|                 | b11- STANDBY                              |               |                |            |                | Asserts when any of the bit is set<br>in STATUS_STANDBY register                  |
|                 | b10 - FANS                                |               |                |            |                | Asserts when any of the bit is set<br>in STATUS_FAN_1_2 register                  |
|                 | b9:3                                      |               |                |            |                |                                                                                   |
|                 | b2 - TEMPERATURE                          |               |                |            |                | Asserts when any of the bit is set<br>in STATUS_TEMPERATURE<br>register           |
| ľ               | b1:0                                      |               |                |            |                |                                                                                   |
|                 | STATUS_INPUT                              | -             | R              | 2          | Bitmapped      |                                                                                   |
|                 | b15 -<br>INPUT_FREQUENCY_OUT_<br>OF_RANGE |               |                |            |                | Asserts when there is an Input<br>line frequency out of range Auto<br>recoverable |
|                 | b14 -<br>INPUT_LINE_MIXED_UP_FA<br>ULT    |               |                |            |                | Asserts when there is an Input<br>line mixed up fault                             |
|                 | b13:8                                     |               |                |            |                |                                                                                   |
|                 | b7 - VIN_OV_FAULT                         |               |                |            |                | Asserts when there is an input overvoltage fault auto recoverable                 |
| 71h             | B6:5                                      |               |                |            |                |                                                                                   |
|                 | b4 - VIN_UV_FAULT                         |               |                |            |                | Asserts when there is an input<br>under voltage fault auto<br>recoverable         |
|                 | b3                                        |               |                |            |                |                                                                                   |
|                 | b2 - IIN_OC_FAULT                         |               |                |            |                | Asserts when there is an input overcurrent fault auto recoverable                 |
|                 | b1 - IIN_POWER_DERATING                   |               |                |            |                | Asserts when there is an input power derating auto recoverable                    |
|                 | b0                                        |               |                |            |                |                                                                                   |



| Command<br>Code | Command Name          | Default Value | Access<br>Type | Data Bytes | Data<br>Format | Description                                                                                                                          |
|-----------------|-----------------------|---------------|----------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                 | STATUS_VOUT           | -             | R              | 2          | Bitmapped      |                                                                                                                                      |
|                 | b15 - VOUT_SC_FAULT   |               |                |            |                | Asserts when there is an output<br>short circuit fault.<br>This can be cleared by Input<br>power recycle                             |
|                 | b14:8                 |               |                |            |                |                                                                                                                                      |
|                 | b7 - VOUT_OV_FAULT    |               |                |            |                | Asserts when there is an output<br>overvoltage fault.<br>This can be cleared by input<br>power recycle                               |
|                 | b6:5                  |               |                |            |                |                                                                                                                                      |
| 72h             | b4 - VOUT_UV_FAULT    |               |                |            |                | Asserts when there is an output<br>under voltage fault at voltage<br>source mode.<br>This can be cleared by Input<br>power recycle   |
|                 | b3                    |               |                |            |                |                                                                                                                                      |
|                 | b2 - TON_MAX_FAULT    |               |                |            |                | Device is unable to reach the<br>target output within the stated<br>power up time.<br>This Can be cleared by Input<br>Power Recycle. |
|                 | b1:0                  |               |                |            |                |                                                                                                                                      |
|                 | STATUS_IOUT           | -             | R              | 2          | Bitmapped      |                                                                                                                                      |
|                 | b15:8                 |               |                |            |                |                                                                                                                                      |
| 73h             | b7 - IOUT_OC_FAULT    |               |                |            |                | Asserts when there is an Output<br>Overcurrent Fault.<br>This Can be cleared by Input<br>Power Recycle.                              |
| /011            | b6 - IOUT_OC_LV_FAULT |               |                |            |                | Asserts when there is an output<br>overpower fault at current source<br>mode.<br>This can be cleared by input<br>power recycle.      |
|                 | b5:0                  |               |                |            |                |                                                                                                                                      |



| Command<br>Code | Command Name                  | Default Value | Access<br>Type | Data Bytes | Data<br>Format | Description                                                                                                                                   |
|-----------------|-------------------------------|---------------|----------------|------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 74h             | STATUS_MFR_SPECIFIC           | -             | R              | 2          | Bitmapped      |                                                                                                                                               |
|                 | b15 -<br>SECONDARY_RAIL_FAULT |               |                |            |                |                                                                                                                                               |
|                 | b14 - BOOST_SCP               |               |                |            |                | Any of the two Bulk output<br>voltage below short circuit<br>protection level.<br>This can be cleared by input                                |
|                 |                               |               |                |            |                | power recycle.                                                                                                                                |
|                 | b13 -<br>BOOST_TON_MAX_FAULT  |               |                |            |                | Device is unable to reach the<br>target bulk voltage within the<br>stated power up time.<br>This can be cleared by input<br>power recycle.    |
|                 | b12 - BOOST_OVP               |               |                |            |                | Bulk Voltage is above overvoltage<br>protection level.<br>This Can be cleared by Input<br>Power Recycle.                                      |
|                 | b11 - BOOST_DIFF_PROT         |               |                |            |                | An event when there is a<br>significant difference between<br>VBulk1 and VBulk2 Regulation.<br>This Can be cleared by Input<br>Power Recycle. |
|                 | b10                           |               |                |            |                |                                                                                                                                               |
|                 | b9 - BOOST_UVP                |               |                |            |                | Bulk voltage is below under voltage<br>protection level. This can be cleared<br>by Input Power Recycle.                                       |
|                 | b8 - BOOST_BAD                |               |                |            |                | A Bulk voltage at nominal<br>voltage threshold                                                                                                |
|                 | b7 -<br>BOOST_OVP_NEGATIVE    |               |                |            |                | Bulk Voltage on negative rail is<br>above overvoltage protection level.<br>This Can be cleared by Input<br>Power Recycle.                     |
|                 | b6 -<br>BOOST_OVP_ POSITIVE   |               |                |            |                | Bulk Voltage on positive rail is<br>above overvoltage protection level.<br>This Can be cleared by Input<br>Power Recycle.                     |
|                 | b5                            |               |                |            |                |                                                                                                                                               |
|                 | b4                            |               |                |            |                |                                                                                                                                               |
|                 | b3                            |               |                |            |                |                                                                                                                                               |
|                 | b2 - PRIMARY_OC_FAULT         |               |                |            |                | Primary overcurrent fault.<br>Latch                                                                                                           |
|                 | b1 -<br>SECONDARY_STUCK_ISP   |               |                |            |                | The SECONDARY_STUCK_ISP is<br>a status if secondary controller is<br>stuck in ISP Mode.                                                       |
|                 | b0 - PRIMARY_STUCK_ISP        |               |                |            |                | The PRIMARY_STUCK_ISP is a status if primary controller is stuck in ISP Mode.                                                                 |



| Command<br>Code | Command Name                    | Default Value | Access<br>Type | Data Bytes | Data<br>Format | Description                                                                                                  |
|-----------------|---------------------------------|---------------|----------------|------------|----------------|--------------------------------------------------------------------------------------------------------------|
| 76h             | STATUS_TEMPERATURE              | -             | R              | 2          | Bitmapped      |                                                                                                              |
|                 | b15 -<br>BOOST_LLC_OT_FAULT     |               |                |            |                | Primary boost temperature is<br>above over temperature fault<br>limit.<br>Auto recoverable.                  |
|                 | b14 -<br>BOOST_PFC_OT_FAULT     |               |                |            |                | Primary boost temperature is<br>above over temperature fault limit.<br>Auto recoverable.                     |
|                 | b13 -<br>DCDC_OR_OT_FAULT       |               |                |            |                | Secondary DCDC Oring<br>temperature is above over<br>temperature fault limit.<br>Auto recoverable.           |
|                 | b12 -<br>DCDC_SYNC_A_OT_FAULT   |               |                |            |                | Secondary DCDC SYNC_A<br>temperature is above over<br>temperature fault limit.<br>Auto recoverable.          |
|                 | b11 -<br>DCDC_SYNC_B_OT_FAULT   |               |                |            |                | Secondary DCDC SYNC_B<br>temperature is above over<br>temperature fault limit.<br>Auto recoverable.          |
|                 | b10 -<br>DCDC_SYNC_C_OT_FAULT   |               |                |            |                | Secondary DCDC SYNC_C<br>temperature is above over<br>temperature fault limit.<br>Auto recoverable.          |
|                 | b9 - AMBIENT_OT_FAULT           |               |                |            |                | Logic ambient temperature is<br>above over temperature fault limit.<br>Auto recoverable                      |
|                 | b8                              |               |                |            |                |                                                                                                              |
|                 | b7 - OT_FAULT                   |               |                |            |                | Asserts when any of the bit [15:9]<br>in STATUS_TEMPERATURE<br>register is set.<br>Auto recoverable.         |
|                 | B6:0                            |               |                |            |                |                                                                                                              |
| 77h             | STATUS_FANS_1_2                 | -             | R              | 2          | Bitmapped      | Report the status of any fans<br>installed in position 1 or position<br>2.                                   |
|                 | b15:8                           |               |                |            |                |                                                                                                              |
|                 | b7 - FAN_1_FAULT                |               |                |            |                | Fan 1 failed completely or not<br>able to provide the target RPM to<br>cool the device.<br>Auto recoverable. |
|                 | b6 - FAN_2_FAULT                |               |                |            |                | Fan 2 failed completely or not<br>able to provide the target RPM to<br>cool the device.<br>Auto recoverable. |
|                 | B5:4                            |               |                |            |                |                                                                                                              |
|                 | b3 - FAN_1_SPEED_<br>OVERRIDDEN |               |                |            |                |                                                                                                              |
|                 | b2 - FAN_2_SPEED_<br>OVERRIDDEN |               |                |            |                |                                                                                                              |
|                 | B1:0                            |               |                |            |                |                                                                                                              |



| Command<br>Code | Command Name                        | Default Value | Access<br>Type | Data Bytes | Data<br>Format | Description                                                                                                                   |
|-----------------|-------------------------------------|---------------|----------------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------|
| 7Ch             | STATUS_STANDBY                      | -             | R              | 2          | Bitmapped      |                                                                                                                               |
|                 | b15:5                               |               |                |            |                |                                                                                                                               |
|                 | b4 - STANDBY_SC_FAULT               |               |                |            |                | Standby voltage is below short<br>circuit voltage protection level<br>and standby output is over<br>current protection level. |
|                 |                                     |               |                |            |                | This can be cleared by input power recycle.                                                                                   |
|                 | b3 - STANDBY_VOUT_OV_               |               |                |            |                | Standby voltage is above over voltage protection level.                                                                       |
|                 | FAULT                               |               |                |            |                | This can be cleared by input power recycle.                                                                                   |
|                 | b2 - STANDBY_VOUT_UV_<br>FAULT      |               |                |            |                | Standby voltage is below under voltage protection level.                                                                      |
|                 |                                     |               |                |            |                | This can be cleared by input<br>power recycle.                                                                                |
|                 | b1 - STANDBY_IOUT_OC_<br>FAULT      |               |                |            |                | Standby output is above over current protection level.                                                                        |
|                 |                                     |               |                |            |                | This can be cleared by input power recycle.                                                                                   |
|                 | b0 - STANDBY_VOUT_BAD               |               |                |            |                | Standby output is below nominal voltage threshold                                                                             |
| 84h             | OPERATION                           | 0080          | R/W            | 2          |                | Used to turn the device on and off.                                                                                           |
|                 | b15:9                               |               |                |            |                |                                                                                                                               |
|                 | b8 - CLEAR_FAULT_LATCH              |               |                |            |                | 0 – Do nothing<br>1 – Clear all latching faults                                                                               |
|                 | b7 - ON                             |               |                |            |                | 0 - PSU Off<br>1 - PSU On                                                                                                     |
|                 | b6:0                                |               |                |            |                | 1                                                                                                                             |
|                 | MODULE_CONFIG                       | -             | R/W            | 2          |                | Used to configure the module.                                                                                                 |
|                 | b15:4                               |               | ,              |            |                | 5                                                                                                                             |
|                 | b3 - OPERATION MODE                 |               |                |            |                | 0 - Voltage Source Mode<br>1 - Current Source Mode                                                                            |
| 87h             | b2                                  |               |                |            |                |                                                                                                                               |
|                 | b1 - REMOTE MODE                    |               |                |            |                | 0 – Digital Mode<br>1 – Analog Mode                                                                                           |
|                 | b0                                  |               |                |            |                |                                                                                                                               |
|                 | MODULE_OPERATION                    | -             | R/W            | 2          |                | Used to enable/disable the module configuration.                                                                              |
|                 | b15:2                               |               |                |            |                |                                                                                                                               |
| 88h             | b1 - Module Sync Start<br>Override  |               |                |            |                | 0- Disable override for sync start<br>(Do Sync)<br>1- Enable override for sync start<br>(Not ready for Sync)                  |
|                 | b0 - Enable Module<br>Configuration |               |                |            |                | 0 – Disable Configuration (This<br>will turn on the PSU)<br>1 – Enable Configuration (This<br>will turn off the PSU)          |



The FCM10K Series Supported Modbus Command List

| Command<br>Code | Command Name                 | Default<br>Value | Access<br>Type | Size in<br>Word | Data Format | Description                                                                                                                                                                     |
|-----------------|------------------------------|------------------|----------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00h             | PSU_MODEL_ID                 | -                | R              | 2               | ASCII       | Varies                                                                                                                                                                          |
| 02h             | PSU_MFR_MODEL                | -                | R              | 10              | ASCII       | Varies                                                                                                                                                                          |
| 0Ch             | PSU_MFR_LOCATION             | -                | R              | 10              | ASCII       | Default: "LAGUNA"                                                                                                                                                               |
| 16h             | PSU_MFR_DATE                 | -                | R              | 4               | ASCII       | Format: "WW/YYYY"                                                                                                                                                               |
| 1Ah             | PSU_MFR_SERIAL               | -                | R              | 10              | ASCII       | Format: "SSSSS"                                                                                                                                                                 |
| 24h             | PSU_HW_REVISION              | -                | R              | 2               | ASCII       | Format: "ZZZ"                                                                                                                                                                   |
| 26h             | PSU_FW_REVISION              | -                | R              | 12              | ASCII       | Varies                                                                                                                                                                          |
| 38h             | PSU_CALIB_DATE               | -                | R              | 3               | ASCII       | Format: "YYMMDD"                                                                                                                                                                |
| 3Bh to 6Fh      | RESERVED FOR MFR SPECIFIC    | RELATED CO       | MMANDS         |                 |             |                                                                                                                                                                                 |
| 70h             | STATUS_WORD                  | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 71h             | STATUS_INPUT                 | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 72h             | STATUS_VOUT                  | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 73h             | STATUS_IOUT                  | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 74h             | STATUS_MFR_SPECIFIC          | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 75h             | RESERVED FOR STATUS MONIT    | ORING COMI       | MANDS          |                 |             |                                                                                                                                                                                 |
| 76h             | STATUS_TEMPERATURE           | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 77h             | STATUS_FAN_1_2               | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 78h to 7Bh      | RESERVED FOR STATUS MONIT    | ORING COMI       | MANDS          |                 |             |                                                                                                                                                                                 |
| 7Ch             | STATUS_STANDBY               | -                | R              | 1               | Bitmapped   |                                                                                                                                                                                 |
| 7Dh to 7Fh      | RESERVED FOR CONFIGURABL     | E RELATED C      | OMMANDS        |                 |             |                                                                                                                                                                                 |
| 80h to 81h      | RESERVED FOR CONFIGURABL     | E RELATED C      | OMMANDS        |                 |             |                                                                                                                                                                                 |
| 82h             | FAN1 RPM OVERRIDE            | 0%               | R/W            | 1               | x1          | Range: 0% to 100%                                                                                                                                                               |
| 84h             | OPERATION                    | 0x0080           | R/W            | 1               | Bitmapped   | -                                                                                                                                                                               |
| 85h             | VREF_TRIM                    | 54.5             | R/W            | 1               | ×100        | Range: 48.0V to 60.0V<br>(VREF_MAX_LIMIT)                                                                                                                                       |
| 86h1            | IREF_TRIM                    | -                | R/W            | 1               | ×100        | Voltage Source Mode:<br>Default: 183.5A<br>Range: 9.175A to 183.5A<br>(IREF_MAX_LIMIT)<br>Current Source Mode:<br>Default 9.175A<br>Range: 9.175A to 183.5A<br>(IREF_MAX_LIMIT) |
| 87h             | MODULE CONFIG                | -                | R/W            | 1               | Bitmapped   | -                                                                                                                                                                               |
| 88h             | MODULE OPERATION             | -                | R/W            | 1               | Bitmapped   | -                                                                                                                                                                               |
| 89h to 8Ah      | RESERVED FOR CONFIGURABL     | E RELATED C      | OMMANDS        |                 |             |                                                                                                                                                                                 |
| 8Bh             | DSP_PROG_RESCALE_<br>PROFILE | -                | R/W            | 1               | -           | Default: 0x00 - Default Profile<br><u>0x01 - (Profile 1)</u><br><u>0x02 - (Profile 2)</u><br><u>0x03 - (Profile 3)</u>                                                          |
| 8Ch             | VPROG_RESCALE_MIN            | 48               | R/W            | 1               | x100        | Range: 48V to 60V                                                                                                                                                               |
| 8Dh             | VPROG_RESCALE_MAX            | 60               | R/W            | 1               | ×100        | Range: VPROG_RESCALE_MIN to 60V                                                                                                                                                 |
| 8Eh             | VPROG_RESCALE_PT1            | 1                | R/W            | 1               | ×100        | Range: VPROG_TURN_ON_<br>POINT to 10V                                                                                                                                           |
| 8Fh             | VPROG_RESCALE_PT2            | 10               | R/W            | 1               | ×100        | Range: VPROG_RESCALE_PT1<br>to 10V                                                                                                                                              |

Note 1 - Applicable for wide trim Variant.

The FCM10K Series Supported Modbus Command List

| Command<br>Code  | Command Name               | Default<br>Value | Access<br>Type | Size in<br>Word | Data Format | Description                                                                                         |
|------------------|----------------------------|------------------|----------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------|
| 90h              | VPROG_TURN_ON_POINT        | 0.48             | R/W            | 1               | x100        | Range: 0.48V to 10V                                                                                 |
| 91h <sup>1</sup> | IPROG_RESCALE_MIN          | 0.48             | R/W            | 1               | x100        | Range: 0.48A to 183.5A                                                                              |
| 92h <sup>1</sup> | IPROG_RESCALE_MAX          | 183.5            | R/W            | 1               | ×100        | Range: IPROG_RESCALE_MIN to 183.5A                                                                  |
| 93h <sup>1</sup> | IPROG_RESCALE_PT1          | 1                | R/W            | 1               | ×100        | Range:<br>IPROG_TURN_ON_POINT to 10V                                                                |
| 94h <sup>1</sup> | IPROG_RESCALE_PT2          | 10               | R/W            | 1               | ×100        | Range: IPROG_RESCALE_PT2 to 10V                                                                     |
| 95h <sup>1</sup> | IPROG_TURN_ON_POINT        | 0.48             | R/W            | 1               | ×100        | Range: 0.48V to 10V                                                                                 |
| 96h              | IO_POLARITY                | -                | R/W            | 1               | -           | Default: 0x01 - Disabled<br>Standalone Mode<br>0x02 - Enable Standalone Mode<br>Range: 0x00 to 0x03 |
| 97h <sup>1</sup> | VREF_MAX_LIMIT             | 60               | R/W            | 1               | ×100        | Range: 48V to 60V<br>(Auto save in Non Volatile<br>Memory after Writing)                            |
| 98h1             | IREF_MAX_LIMIT             | -                | R/W            | 1               | ×100        | Range: 0.48A to 183.5A<br>(Auto save in Non Volatile<br>Memory after Writing)                       |
| 99h to A9h       | RESERVED FOR CONFIGURABL   | E RELATED C      | OMMANDS        |                 |             | •                                                                                                   |
| AAh              | DEVICE_BASE_ADDRESS        | 0x0C             | R/W            | 1               | -           | 0x00 - 0x0F                                                                                         |
| ABh              | BAUD_RATE_CONFIG           | -                | R/W            | 1               | -           |                                                                                                     |
| ACh to<br>AFh    | RESERVED FOR CONFIGURABL   | E RELATED C      | OMMANDS        |                 | •           |                                                                                                     |
| B0h              | PSU_OUTPUT_VOLTAGE         | -                | R              | 1               | ×100        | Varies                                                                                              |
| B1h              | PSU_OUTPUT_CURRENT         | -                | R              | 1               | x100        | Varies                                                                                              |
| B2h              | PSU_OUTPUT_POWER           | -                | R              | 1               | x1          | Varies                                                                                              |
| B3h              | PSU_OUTPUT_VOR_<br>VOLTAGE | -                | R              | 1               | x10         | Varies                                                                                              |
| B4h              | PSU_INPUT_VOLTAGE_A        | -                | R              | 1               | ×100        | Varies                                                                                              |
| B5h              | PSU_INPUT_CURRENT_A        | -                | R              | 1               | ×100        | Varies                                                                                              |
| B6h              | PSU_INPUT_POWER            | -                | R              | 1               | ×1          | Varies                                                                                              |
| B7h              | PSU_TEMP1-PRI              | -                | R              | 1               | ×100        | Varies                                                                                              |
| B8h              | PSU_TEMP2- SEC             | -                | R              | 1               | ×100        | Varies                                                                                              |
| B9h <sup>1</sup> | PSU_TEMP3- BUCK            | -                | R              | 1               | ×100        | Varies                                                                                              |
| BAh              | PSU_TEMP4- AMBIENT         | -                | R              | 1               | ×100        | Varies                                                                                              |
| BBh              | PSU_TEMP5-NFC              | -                | R              | 1               | ×100        | Varies                                                                                              |
| BCh to BDh       | RESERVED FOR MONITORING    | RELATED CON      | /MANDS         |                 | 1           |                                                                                                     |
| BEh              | PSU RPM FANO               | -                | R              | 1               | ×1          | Varies                                                                                              |
| BFh              | PSU RPM FAN1               | -                | R              | 1               | ×1          | Varies                                                                                              |
| C0h to D4h       | RESERVED FOR MONITORING    | RELATED CON      | MAND           |                 |             |                                                                                                     |
| D5h              | PSU_STANDBY_VOLTAGE        | -                | R              | 1               | ×100        | Varies                                                                                              |
| D6h              | PSU_STANDBY_CURRENT        | -                | R              | 1               | ×10000      | Varies                                                                                              |
| D7h              | PSU_INPUT_VOLTAGE_B        | -                | R              | 1               | ×1          | Varies                                                                                              |
| D8h              | PSU_INPUT_VOLTAGE_C        | -                | R              | 1               | ×1          | Varies                                                                                              |
| D9h to DBh       | RESERVED FOR MONITORING    | RELATED CON      | /MANDS         |                 |             |                                                                                                     |

Note 1 - Applicable for wide trim Variant.



| Command<br>Code | Command Name                             | Default<br>Value | Access<br>Type | Size in<br>Word | Data Format | Description |
|-----------------|------------------------------------------|------------------|----------------|-----------------|-------------|-------------|
| DCh             | PSU_INPUT_CURRENT_B                      | -                | R              | 1               | x100        | Varies      |
| DDh             | PSU_INPUT_CURRENT_C                      | -                | R              | 1               | x100        | Varies      |
| DEh             | PSU_INPUT_POWER_A                        | -                | R              | 1               | x1          | Varies      |
| DFh             | PSU_INPUT_ POWER_B                       | -                | R              | 1               | x1          | Varies      |
| E0h             | PSU_INPUT_ POWER_C                       | -                | R              | 1               | x1          | Varies      |
| E1h             | PSU_INPUT_LINE_FREQ                      | -                | R              | 1               | x10         | Varies      |
| E2h to FFh      | RESERVED FOR MONITORING F                | RELATED CON      | /MANDS         |                 |             |             |
| 600h            | BLACKBOX_PAGE                            | 0                | R              | 1               | -           | Value: 0-9  |
| 610h            | FAULT_RECORD_STATUS_<br>WORD             | -                | R              | 1               | Bitmapped   | Varies      |
| 611h            | FAULT_RECORD_STATUS_<br>INPUT            | -                | R              | 1               | Bitmapped   | Varies      |
| 612h            | FAULT_RECORD_STATUS_<br>VOUT             | -                | R              | 1               | Bitmapped   | Varies      |
| 613h            | FAULT_RECORD_STATUS_<br>IOUT             | -                | R              | 1               | Bitmapped   | Varies      |
| 614h            | FAULT_RECORD_STATUS_<br>MFR_SP ECIFIC    | -                | R              | 1               | Bitmapped   | Varies      |
| 615h            | FAULT_RECORD_STATUS_<br>STANDB Y         | -                | R              | 1               | Bitmapped   | Varies      |
| 616h            | FAULT_RECORD_STATUS_<br>TEMPER ATURE     | -                | R              | 1               | Bitmapped   | Varies      |
| 617h            | FAULT_RECORD_STATUS_<br>FAN_1_ 2         | -                | R              | 1               | Bitmapped   | Varies      |
| 618h            | FAULT_RECORD_PSU_<br>OUTPUT_V OLATGE     | -                | R              | 1               | ×100        | Varies      |
| 619h            | FAULT_RECORD_PSU_<br>OUTPUT_C URRENT     | -                | R              | 1               | x100        | Varies      |
| 61Ah            | FAULT_RECORD_PSU_<br>OUTPUT_P OWER       | _                | R              | 1               | ×1          | Varies      |
| 61Bh            | FAULT_RECORD_PSU_<br>OUTPUT_V OR_VOLTAGE | -                | R              | 1               | x100        | Varies      |
| 61Ch            | FAULT_RECORD_PSU_<br>INPUT_VOLTAGE_A     | -                | R              | 1               | ×1          | Varies      |
| 61Dh            | FAULT_RECORD_PSU_<br>INPUT_CURRENT_A     | -                | R              | 1               | ×100        | Varies      |
| 61Eh            | FAULT_RECORD_PSU_<br>INPUT_VOLTAGE_B     | -                | R              | 1               | ×1          | Varies      |
| 61Fh            | FAULT_RECORD_PSU_<br>INPUT_CURRENT_B     | -                | R              | 1               | ×100        | Varies      |
| 620h            | FAULT_RECORD_PSU_<br>INPUT_VOLTAGE_C     | -                | R              | 1               | ×1          | Varies      |
| 621h            | FAULT_RECORD_PSU_<br>INPUT_CURRENT_C     | -                | R              | 1               | x100        | Varies      |
| 622h            | FAULT_RECORD_PSU_<br>INPUT_POWER_TOTAL   | -                | R              | 1               | x1          | Varies      |
| 623h            | FAULT_RECORD_TEMP1-PRI                   | -                | R              | 1               | ×100        | Varies      |
| 624h            | FAULT_RECORD_TEMP2-SEC                   | -                | R              | 1               | x100        | Varies      |



| Command<br>Code | Command Name                                             | Default<br>Value | Access<br>Type | Size in<br>Word | Data Format | Description |
|-----------------|----------------------------------------------------------|------------------|----------------|-----------------|-------------|-------------|
| 625h            | FAULT_RECORD_TEMP3-<br>BUCK                              | -                | R              | 1               | x100        | Varies      |
| 626h            | FAULT_RECORD_TEMP4-<br>AMBIENT                           | -                | R              | 1               | ×100        | Varies      |
| 627h            | FAULT_RECORD_TEMP5-NFC                                   | -                | R              | 1               | ×100        | Varies      |
| 628h            | FAULT_RECORD_PSU_ FAN1                                   | -                | R              | 1               | ×100        | Varies      |
| 629h            | FAULT_RECORD_PSU_ FAN2                                   | -                | R              | 1               | ×100        | Varies      |
| 62Ah            | FAULT_RECORD_PSU_<br>STANDBY_VOLTAGE                     | -                | R              | 1               | x100        | Varies      |
| 62Bh            | FAULT_RECORD_PSU_<br>STANDBY_CURRENT                     | -                | R              | 1               | x10000      | Varies      |
| 62Ch            | FAULT_RECORD_PSU_<br>MODULE_CONFIG                       | -                | R              | 1               | Bitmapped   | Varies      |
| 62Dh            | FAULT_RECORD_PSU_VREF_<br>TRIM                           | -                | R              | 1               | x100        | Varies      |
| 62Eh            | FAULT_RECORD_PSU_IREF_T<br>RIM                           | -                | R              | 1               | x100        | Varies      |
| 62Fh            | FAULT_RECORD_PSU_BAUD_<br>RATE _CONFIG                   | -                | R              | 1               | -           | Varies      |
| 630h            | FAULT_RECORD_PSU_VREF_<br>MAX_ LIMIT                     | -                | R              | 1               | x100        | Varies      |
| 631h            | FAULT_RECORD_PSU_IREF_<br>MAX_ LIMIT                     | -                | R              | 1               | x100        | Varies      |
| 632h            | FAULT_RECORD_PSU_PRI_<br>ADP_U ART_ERROR_COUNT           | -                | R              | 1               | ×1          | Varies      |
| 633h            | FAULT_RECORD_PSU_<br>SEC_PRI_ADP_UART_ERROR<br>_COU NT   | -                | R              | 1               | ×1          | Varies      |
| 634h            | FAULT_RECORD_PSU_<br>SEC_LOGIC_ADP_UART_ERR<br>OR_C OUNT | -                | R              | 1               | x1          | Varies      |
| 635h            | FAULT_RECORD_PSU_<br>LOGIC_ADP_UART_ERROR_C<br>OUN T     | -                | R              | 1               | x1          | Varies      |
| 636h            | FAULT_RECORD_PSU_<br>TOTAL_TIME                          | -                | R              | 2               | -           | Varies      |
| 638h            | FAULT_RECORD_PSU_<br>TIME_SINCE_LAST_ON                  | -                | R              | 2               | -           | Varies      |
| 63Ah            | FAULT_RECORD_HIGH_AMBI<br>ENT_ TIMER                     | -                | R              | 2               | -           | Varies      |
| 63Ch            | FAULT_RECORD_VOR_LLC_<br>OVP                             | -                | R              | 1               | x100        | Varies      |
| 63Dh            | FAULT_RECORD_PSU_INPUT<br>_POWER_A                       | -                | R              | 1               | ×1          | Varies      |
| 63Eh            | FAULT_RECORD_PSU_INPUT<br>_POWER_B                       | -                | R              | 1               | ×1          | Varies      |
| 63Fh            | FAULT_RECORD_PSU_INPUT<br>_POWER_C                       | -                | R              | 1               | x1          | Varies      |
| 640h            | FAULT_RECORD_Ambient<br>Temp I2C Error Count             | -                | R              | 1               | ×1          | Varies      |



| Command<br>Code | Command Name                               | Default<br>Value | Access<br>Type | Size in<br>Word | Data Format | Description |
|-----------------|--------------------------------------------|------------------|----------------|-----------------|-------------|-------------|
| 641h            | FAULT_RECORD_NFC I2C<br>Error Count        | -                | R              | 1               | x1          | Varies      |
| 642h to<br>6HHh | RESERVED FOR FAULT RECORD RELATED COMMANDS |                  |                |                 |             |             |



### 9.1 Mode of Operation

The power supply is configurable between voltage source and current source. At voltage source mode, the output voltage is kept regulated at different line, load, operating temperature, and any other conditions (as long as it is within the normal operating range). At current source mode, the output current is the one to be kept within regulation level.

### 9.2 Digital and Analog Command

The output of the power supply is remotely programmable, only one programming method is allowed at a time. The default Output Voltage and Current trimming is through digital command via Modbus.

| Methods for Output Adjustment |                                                                                                                                                                                                                    |  |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Voltage Source                | Digital Command via RS485 ModBus<br>Analog via CC/CV_MODE input signal pin<br>• Adjustment of Vout through external voltage on V_prog output signal<br>• 0-10V Remote Programming on V_PROG output signal          |  |  |  |  |  |
| Current Source                | Digital Command via RS485 ModBus<br>Analog via CC/CV_MODE input signal pin<br>• Adjustment of Vout through external voltage on V_prog output signal<br>• 0-10V Remote Programming on I_PROG output signal          |  |  |  |  |  |
| Digital Command to Analog     | Digital Command via RS485 ModBus<br>ANALOG/DIGITAL_MODE signal Pin out<br>Pulled to GNDL will enable Vout and lout trimming via analog (CC/CV_MODE)<br>OPEN will enable Vout and lout trimming via digital command |  |  |  |  |  |



### 9.3 Output Adjustability and Programmability

#### Output Adjusted via RS485 ModBus Communication Commands

Applicable for both Voltage Source and Current Source mode operation.

#### 0-10V Remote Programming (V\_PROG and I\_PROG)

Applicable for both voltage source and current Source mode operation. The table below is for reference only.

#### Output Voltage adjustment via V\_PROG pin

| 0-10V_PROG (V) | Output Voltage (V) |
|----------------|--------------------|
| 0              | 48                 |
| 1              | 49.2               |
| 2              | 50.4               |
| 3              | 51.6               |
| 4              | 52.8               |
| 5              | 54                 |
| 6              | 55.2               |
| 7              | 56.4               |
| 8              | 57.6               |
| 9              | 58.8               |
| 10             | 60                 |

#### Output Voltage adjustment via I\_PROG pin

| 0-10V_PROG (V) | Output Current (A) |
|----------------|--------------------|
| 0              | ТВА                |
| 1              | TBA                |
| 2              | ТВА                |
| 3              | ТВА                |
| 4              | ТВА                |
| 5              | ТВА                |
| 6              | ТВА                |
| 7              | ТВА                |
| 8              | ТВА                |
| 9              | ТВА                |
| 10             | ТВА                |

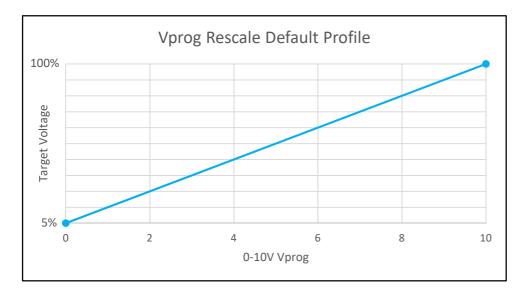


#### 0-10V re-scaling function (VPROG / IPROG RESCALING)

This section describes the Analog Vprog and Iprog Rescaling function of the PSU (See under Output Adjustability and Programmability, 0-10V re-scaling function section of the Product Specification) and corresponding rescale profiles.

Note: Vprog or Iprog rescaling is only available for Wide trim Range Variant PSU.

#### Vprog Rescaling


The PSU's mode of operation must be on analog Voltage Source mode when MODULE\_CONFIG (command code 87h) is set to 02h.

Note: The PSU should be on standby mode when adjusting Vprog rescale profile.

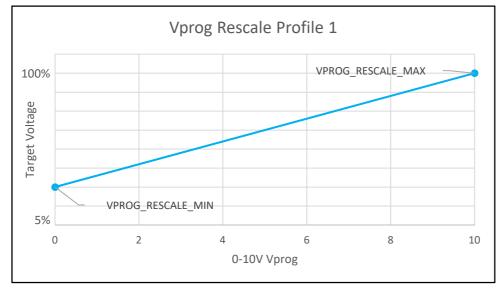
#### Vprog Rescaling Default Profile

This describes the setting for analog Vprog default profile. Writing 00h (default) to DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) will update the Vprog profile to default. This profile will set target voltage to TBA V to TBA V for 0V to 10V Vprog respectively.

PSU target voltage versus the 0-10V Vprog for Vprog rescale default profile.






#### VPROG Rescaling Profile 1

The following sequence of commands should be followed to set Vprog Profile 1:

- 1. Set VPROG\_RESCALE\_MIN (command code 8Ch) to adjust the minimum rescale value.
- 2. Set VPROG\_RESCALE\_MAX (command code 8Fh) to adjust the maximum rescale value.

3. Set DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) to 01h (profile 1) to update the Vprog profile based on the written values from the rescale commands.

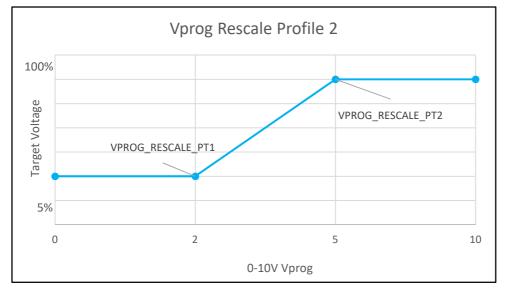
Sample Vprog rescale profile 1 adjustment is shown below, VPROG\_RESCALE\_MIN is set to 14000 (140V), and VPROG\_RESCALE\_MAX is set to 20000 (200V).



Note: VPROG\_RESCALE\_MIN must be less than VPROG\_RESCALE\_MAX.



#### Vprog Rescaling Profile 2


The following sequence of commands should be followed to set Vprog Profile 2:

1. Set VPROG\_RESCALE\_PT1 (command code 8Eh) to adjust the Vprog Low Point.

2. Set VPROG\_RESCALE\_PT2 (command code 8Fh) to adjust the Vprog High Point.

3. Set DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) to 02h (profile 2) to update the Vprog profile based on the written values from the rescale commands.

Sample Vprog rescale profile 2 adjustment is shown below, VPROG\_RESCALE\_PT1 is set to 200 (2V), and VPROG\_RESCALE\_PT2 is set to 500 (5V).



Note: VPROG\_RESCALE\_PT1 must be less than VPROG\_RESCALE\_PT2.



#### Vprog Rescaling Profile 3

The following sequence of commands should be followed to set Vprog Profile 3:

1. Set VPROG\_TURN\_ON\_POINT (command code 90h) to adjust Vprog Turn on Point.

2. Set VPROG\_RESCALE\_PT1 (command code 8Eh) to adjust the Vprog Low Point.

3. Set VPROG\_RESCALE\_PT2 (command code 8Fh) to adjust the Vprog High Point.

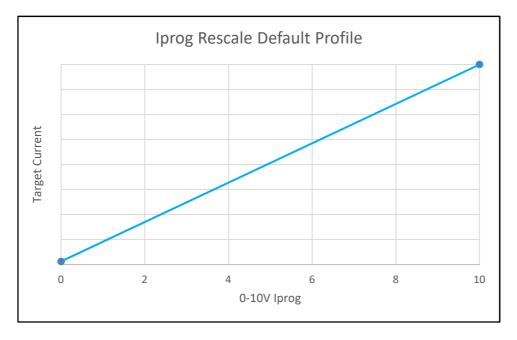
4. Set DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) to 03h (profile 3) to update the Vprog profile based on the written values from the rescale commands.

Sample Vprog rescale profile 3 adjustment is shown below, VPROG\_TURN\_ON\_POINT is set to 50 (0.5V), VPROG\_RESCALE\_PT1 is set to 200 (2V), and VPROG\_RESCALE\_PT2 is set to 500 (5V).



Note: VPROG\_TURN\_ON\_POINT must be less than VPROG\_RESCALE\_PT1, and VPROG\_RESCALE\_PT1 must be less than VPROG\_RESCALE\_PT2.




#### Iprog Rescaling

The PSU's mode of operation must be on analog Current Source mode when MODULE\_CONFIG (command code 87h) is set to 0Ah. The PSU should be on standby mode when adjusting Iprog rescale profile.

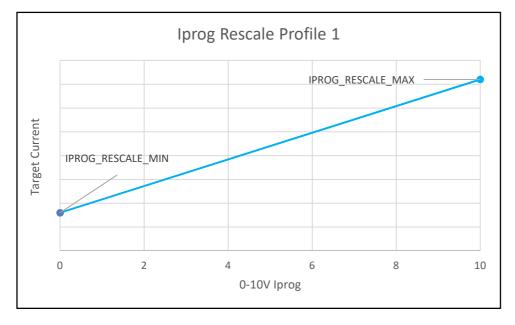
#### Iprog Rescaling Default Profile

This describes the setting for analog Iprog default profile. Writing 00h (default) to DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) will update the Iprog profile to default. This profile will set target current to 0.48-16A for 0-10V Iprog respectively.

PSU target Current versus the 0-10V Iprog for Iprog rescale default profile.






#### Iprog Rescaling Profile 1

The following sequence of commands should be followed to set Iprog Profile 1:

- 1. Set IPROG\_RESCALE\_MIN (command code 91h) to adjust the minimum rescale value.
- 2. Set IPROG\_RESCALE\_MAX (command code 92h) to adjust to adjust the maximum rescale value.

3. Set DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) to 01h (profile 1) to update the Iprog profile based on the written values from the rescale commands.

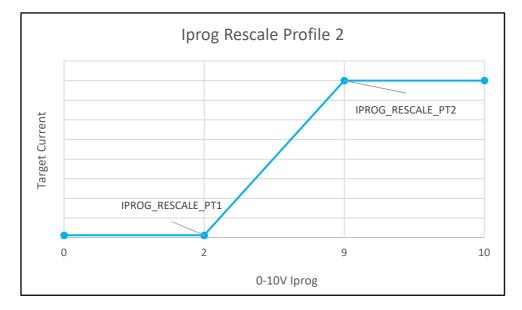
Sample Iprog rescale profile 1 adjustment is shown below, IPROG\_RESCALE\_MIN is set to 300 (3A), and IPROG\_RESCALE\_MAX is set to 1440 (14.4A).



Note: IPROG\_RESCALE\_MIN must be less than IPROG\_RESCALE\_MAX.



#### Iprog Rescaling Profile 2


The following sequence of commands should be followed to set Iprog Profile 2:

1. Set IPROG\_RESCALE\_PT1 (command code 93h) to adjust the Iprog Low Point.

2. Set IPROG\_RESCALE\_PT2 (command code 94h) to adjust the Iprog High Point.

3. Set DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) to 02h (profile 2) to update the Iprog profile based on the written values from the rescale commands.

Sample Iprog rescale profile 2 adjustment is shown below, IPROG\_RESCALE\_PT1 is set to 200 (2V), and IPROG\_RESCALE\_PT2 is set to 900 (9V).

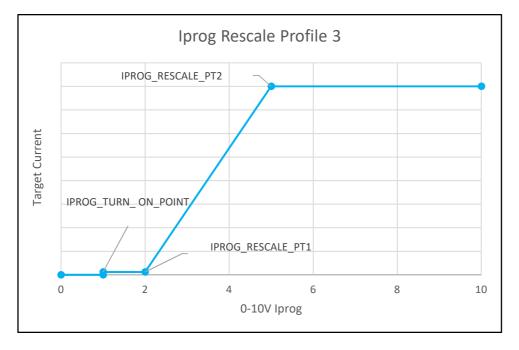


Note: IPROG\_RESCALE\_PT1 must be less than IPROG\_RESCALE\_PT2.



#### **IPROG Rescaling Profile 3**

The following sequence of commands should be followed to set Vprog Profile 3:


1. Set IPROG\_TURN\_ON\_POINT (command Code 95h) to adjust Iprog Turn on Point.

2. Set IPROG\_RESCALE\_PT1 (command code 93h) to adjust the Iprog Low Point.

3. Set IPROG\_RESCALE\_PT2 (command code 94h) to adjust the Iprog High Point.

4. Set DSP\_PROG\_RESCALE\_PROFILE (command code 8Bh) to 03h (profile 3) to update the Iprog profile based on the written values from the rescale commands.

Sample Iprog rescale profile 3 adjustment is shown below, IPROG\_TURN\_ON\_POINT is set to 100 (1V), IPROG\_RESCALE\_PT1 is set to 200 (2V), and IPROG\_RESCALE\_PT2 is set to 500 (5V).



Note: IPROG\_TURN\_ON\_POINT must be less than IPROG\_RESCALE\_PT1, and IPROG\_RESCALE\_PT1 must be less than IPROG\_RESCALE\_PT2.



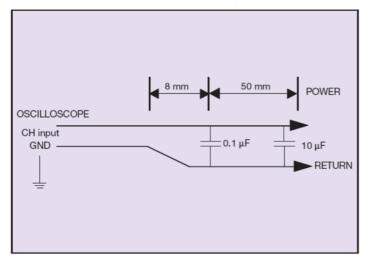
### 9.4 Current Sharing

The FCM10K series shall have a dedicated analog bus for active current sharing. The PSU input impedance of the current sharing shall be 30kR & 100pF or better. Current sharing bus (Ishare) full-scale voltage shall be 7V at full load.

The PSU will have an active load sharing percentage as shown below.

| Rail Loading (%) | Sharing Percent Error(%) |
|------------------|--------------------------|
| 25%              | ±10%                     |
| 50%              | $\pm 5\%$                |
| 75%              | $\pm4\%$                 |
| 100%             | ±4%                      |

Percent Error = ABS (PSUn – Average Current) / (Average Current)


PSUn – Current delivered by PSUn

Average Current = (PSU1+PSU2+PSU3+....PSU6) / (number of PSU in parallel)



### 9.5 Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output ripple and noise measurements on the FCM10K series (Voltage Source Mode). When measuring output ripple and noise, a scope jack in parallel with a 0.1µF ceramic chip capacitor, and a 10µF tantalum capacitor should be used. oscilloscope should be set to 20MHz bandwidth for this measurement.





### 9.6 Accessories

Kit-1 FCM10K-P Test Kits: 83-788-001

| Orderable Part<br>Number | Description                                  | Diagram                                                 |
|--------------------------|----------------------------------------------|---------------------------------------------------------|
| 750-018626-0000          | Input Mating Connector                       | 400 ±10<br>HTSH107<br>Laboratorial<br>HTSH109<br>L=80mm |
| 750-018627-0000          | 6-way Connector (Non-isolated<br>Signal)     |                                                         |
| 750-018627-0000          | 20-way Mating Connector (Isolated<br>Signal) |                                                         |



### 9.6 Accessories

Kit-2 FCM10K DC Back Plane Test Kits: 83-788-002

| Orderable Part<br>Number | Description            | Diagram  |
|--------------------------|------------------------|----------|
| 790-026751-0000          | Single DCDC Back Plane | A SARA T |

### Kit-3 FCM10K-T Test Kits: 83-788-003

| Orderable Part<br>Number | Description                                  | Diagram |
|--------------------------|----------------------------------------------|---------|
| 750-018627-0000          | 6-way Connector (Non-isolated<br>Signal)     |         |
| 750-018627-0000          | 20-way Mating Connector (Isolated<br>Signal) |         |



### FCM10K Series

### SECTION 10 RECORD OF REVISION AND CHANGES

| lssue | Date     | Description | Originators |
|-------|----------|-------------|-------------|
| 1.0   | 02.08.24 | First Issue | Z. Yasheng  |





#### ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than four decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

#### PRECISION | POWER | PERFORMANCE | TRUST

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2025 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.



For international contact information, visit advancedenergy.com.

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832