CE EMC TEST REPORT

for

DC /DC Power Converter

Model: ERM01 . ERM04 Series & ERM00 . ERM02 Series

Brand: EMBEDDED TECHNOLOGIES

Test Report Number: T160519N02-E1

Issued to:

Artesyn Embedded Technologies

16th Floor, Lu Plaza 2 Wing Yip Street, Kwun Tong, Kowloon, Hong Kong

Issued by:

Compliance Certification Services Inc.

Tainan Lab.

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

TEL: 886-6-5802201

FAX: 886-6-5802202

Issued Date: March 1, 2017

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, NIST or any government agencies. The test results in the report only apply to the tested sample.

REVISION HISTORY

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	March 1, 2017	Initial Issue	ALL	Eva Lin

TABLE OF CONTENTS

1	TEST CERTIFICATION	4
2	TEST RESULT SUMMARY	5
3	EUT DESCRIPTION	6
4	TEST METHODOLOGY	16
	4.1. DECISION OF FINAL TEST MODE	_
	4.2. EUT SYSTEM OPERATION	
5	SETUP OF EQUIPMENT UNDER TEST	17
	5.1. DESCRIPTION OF SUPPORT UNITS	
	5.2. CONFIGURATION OF SYSTEM UNDER TEST	
6	FACILITIES AND ACCREDITATIONS	18
Ĭ	6.1. FACILITIES	
	6.2. ACCREDITATIONS	
	6.3. MEASUREMENT UNCERTAINTY	
7	EMISSION TEST	20
	7.1. CONDUCTED EMISSION MEASUREMENT	
	7.2. CONDUCTED EMISSION MEASUREMENT AT ANALOGUE/DIGITAL DATA PORTS	_
	7.3. RADIATED EMISSION MEASUREMENT	
	7.4. HARMONICS CURRENT MEASUREMENT	
	7.5. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT	65
8	IMMUNITY TEST	67
	8.1. GENERAL DESCRIPTION	
	8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION	
	8.3. ELECTROSTATIC DISCHARGE (ESD)	
	8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)	
	8.5. ELECTRICAL FAST TRANSIENT (EFT)	
	8.6. SURGE IMMUNITY TEST	
	8.8. POWER FREQUENCY MAGNETIC FIELD	
	8.9. VOLTAGE DIPS & VOLTAGE INTERRUPTIONS	
9		
	APPENDIX 1 - PHOTOGRAPHS OF FUT	
$\boldsymbol{\mu}$	4FFFINIA I • FOUTUIRAFOS UF FUT	A I

> IEC 61000-4-6: 2013 IEC 61000-4-8: 2009

1 TEST CERTIFICATION

Product: DC /DC Power Converter

Model: ERM01 . ERM04 Series & ERM00 . ERM02 Series

Brand: ASTESYN"

Applicant: Artesyn Embedded Technologies

16th Floor, Lu Plaza 2 Wing Yip Street, Kwun Tong, Kowloon, Hong Kong

Tested: May 03, 2016 ~ May 12, 2016

Applicable EN 55032: 2012+AC: 2013, Class A EN 55024: 2010

Standards: IEC 61000-4-2: 2008
IEC 61000-4-3: 2010
IEC 61000-4-4: 2012
IEC 61000-4-5: 2014

Deviation from Applicable Standard

None

The above equipment was tested by Compliance Certification Services Inc. for compliance with the requirements of technical standards specified above under the EMC Directive 2014/30/EU. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

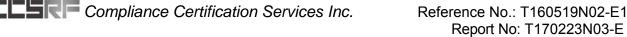
Jeter Wu

Assistant Manager

Reviewed by:

Eric Huang

Assistant Section Manager


2 TEST RESULT SUMMARY

EMISSION				
Standard	Item	Result	Remarks	
	Conducted (Power Port)	PASS	Meet Class A limit	
EN 55032: 2012+AC: 2013	Conducted (Analogue/Digital Data Ports)	N/A	No requirement	
	Radiated (Below 1GHz)	PASS	Meet Class A limit	
	Radiated (Above 1GHz)	N/A	No requirement	
EN 61000-3-2: 2014 Harmonic current emissions		N/A	No requirement	
EN 61000-3-3: 2013 Voltage fluctuations & flicker		N/A	No requirement	

IMMUNITY 【 EN 55024: 2010 】				
Standard	Item	Result	Remarks	
IEC 61000-4-2: 2008	ESD	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-3: 2010	RS	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-4: 2012	EFT	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-5: 2014	Surge	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-6: 2013	CS	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-8: 2009	PFMF	PASS	Meets the requirements of Performance Criterion A	
IEC 61000-4-11: 2004	Voltage dips & voltage variations	N/A	Meets the requirements of Voltage Dips: 1) >95% reduction Performance Criterion 2) 30% reduction Performance Criterion Voltage Interruptions: 1) >95% reduction Performance Criterion	

Note:

- 1. The statements of test result on the above are decided by the request of test standard only; the measurement uncertainties are not factored into this compliance determination.
- 2. The information of measurement uncertainty is available upon the customer's request.

EUT DESCRIPTION

Product	DC /DC Power Converter	
Model	ERM01 · ERM04 Series & ERM00 · ERM02 Series	
Brand Name	ARTESYN TM EMBEDDED TECHNOLOGIES	
Applicant	Artesyn Embedded Technologies	
Housing material	Plastics	
Identify Number	T160519N02-E1	
Received Date	May 19, 2016	
EUT Power Rating	See Below	
EUT Size(L*W*H)	5.5 * 3.0 * 2.0 (cm)	

I/O PORT

I/O PORT TYPES	Q'TY	TESTED WITH
1. DC IN	1	DC Power Supply
2. DC OUT	1	R-Load

Note:

2. For more details, please refer to the User's manual of the EUT.

^{1.} Client consigns only eight model samples to test (Model Number: ERM00CC18-HS, ERM02A18-HS, ERM00CC110-HS, ERM02A110-HS, ERM01CC18-HS, ERM04A18-HS, ERM01CC110-HS, ERM04A110-HS). Therefore, the testing Lab. just guarantees the unit, which has been tested.

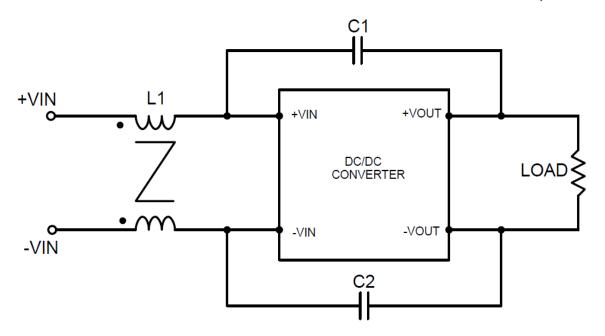
3. To add a series model is for business necessary. The different of the each model is shown as below:

Model Number	Input Voltage (Range) VDC	Output Voltage VDC
	ERM00 · ERM02 Series	
ERM02A18		5
ERM00B18		12
ERM00C18	24	15
ERM00H18	(9~36)	24
ERM00B18		±12
ERM00C18		±15
ERM02A36		5
ERM00B36		12
ERM00C36	48	15
ERM00H36	(18~75)	24
ERM00BB36		±12
ERM00CC36		±15
ERM02A110		5
ERM00B110		12
ERM00C110	110	15
ERM00H110	(40~160)	24
ERM00BB110		±12
ERM00CC110		±15

	ERM01 · ERM04 Series	
ERM04A18		5
ERM01B18		12
ERM01C18	24	15
ERM01H18	(9~36)	24
ERM01BB18		±12
ERM01CC18		±15
ERM04A36		5
ERM01B36		12
ERM01C36	48	15
ERM01H36	(18~75)	24
ERM01BB36		±12
ERM01CC36		±15
ERM04A110		5
ERM01B110		12
ERM01C110	110	15
ERM01H110	(40~160)	24
ERM01BB110		±12
ERM01CC110		±15

Order Code Table			
Standard	With heatsink		
ERM00 · ERI	M02 Series		
ERM02A18	ERM02A18-HS		
ERM00B18	ERM00B18-HS		
ERM00C18	ERM00C18-HS		
ERM00H18	ERM00H18-HS		
ERM00B18	ERM00BB18-HS		
ERM00C18	ERM00CC18-HS		
ERM02A36	ERM02A36-HS		
ERM00B36	ERM00B36-HS		
ERM00C36	ERM00C36-HS		
ERM00H36	ERM00H36-HS		
ERM00BB36	ERM00BB36-HS		
ERM00CC36	ERM00CC36-HS		
ERM02A110	ERM02A110-HS		
ERM00B110	ERM00B110-HS		
ERM00C110	ERM00C110-HS		
ERM00H110	ERM00H110-HS		
ERM00BB110	ERM00BB110-HS		
ERM00CC110	ERM00CC110-HS		

ERM01 · ERM04 Series		
ERM04A18	ERM04A18-HS	
ERM01B18	ERM01B18-HS	
ERM01C18	ERM01C18-HS	
ERM01H18	ERM01H18-HS	
ERM01BB18	ERM01BB18-HS	
ERM01CC18	ERM01CC18-HS	
ERM04A36	ERM04A36-HS	
ERM01B36	ERM01B36-HS	
ERM01C36	ERM01C36-HS	
ERM01H36	ERM01H36-HS	
ERM01BB36	ERM01BB36-HS	
ERM01CC36	ERM01CC36-HS	
ERM04A110	ERM04A110-HS	
ERM01B110	ERM01B110-HS	
ERM01C110	ERM01C110-HS	
ERM01H110	ERM01H110-HS	
ERM01BB110	ERM01BB110-HS	
ERM01CC110	ERM01CC110-HS	

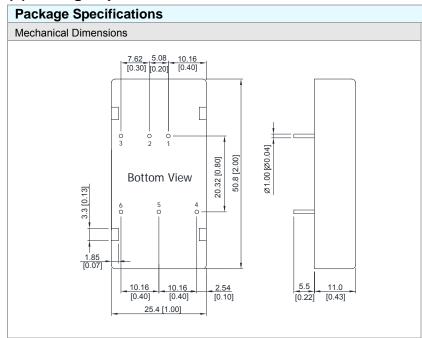


Order Code Table		
Package Specifications with "A" Pinning	With heatsink	
ERM00 · ERM	M02 Series	
ERM02A18B	ERM02A18B-HS	
ERM00B18B	ERM00B18B-HS	
ERM00C18B	ERM00C18B-HS	
ERM00H18B	ERM00H18B-HS	
ERM00BB18B	ERM00BB18B-HS	
ERM00CC18B	ERM00CC18B-HS	
ERM02A36B	ERM02A36B-HS	
ERM00B36B	ERM00B36B-HS	
ERM00C36B	ERM00C36B-HS	
ERM00H36B	ERM00H36B-HS	
ERM00BB36B	ERM00BB36B-HS	
ERM00CC36B	ERM00CC36B-HS	
ERM02A110B	ERM02A110B-HS	
ERM00B110B	ERM00B110B-HS	
ERM00C110B	ERM00C110B-HS	
ERM00H110B	ERM00H110B-HS	
ERM00BB110B	ERM00BB110B-HS	
ERM00CC110B	ERM00CC110B-HS	

ERM01 · ERM04 Series		
ERM04A18B	ERM04A18B-HS	
ERM01B18B	ERM01B18B-HS	
ERM01C18B	ERM01C18B-HS	
ERM01H18B	ERM01H18B-HS	
ERM01BB18B	ERM01BB18B-HS	
ERM01CC18B	ERM01CC18B-HS	
ERM04A36B	ERM04A36B-HS	
ERM01B36B	ERM01B36B-HS	
ERM01C36B	ERM01C36B-HS	
ERM01H36B	ERM01H36B-HS	
ERM01BB36B	ERM01BB36B-HS	
ERM01CC36B	ERM01CC36B-HS	
ERM04A110B	ERM04A110B-HS	
ERM01B110B	ERM01B110B-HS	
ERM01C110B	ERM01C110B-HS	
ERM01H110B	ERM01H110B-HS	
ERM01BB110B	ERM01BB110B-HS	
ERM01CC110B	ERM01CC110B-HS	

(1) Conducted & Radiated Solution:

External Filter meets Radiated EMI EN 55032 & EN 55022, class A; FCC part 15, level A.

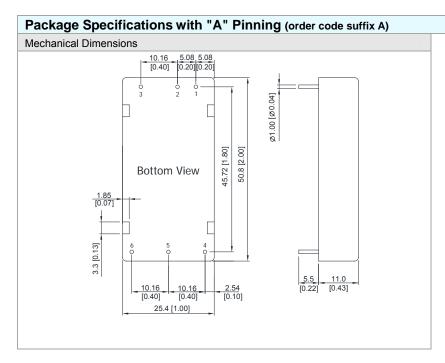

Class	Model	C1	C2	L1
	ERM00XX18X; ERM02XX18X		2200pF Y1 Cap.	1mH/2A, 744821201
	ERM00XX36X;	47μF/100V/1210 X7R	2200pF Y1 Cap.	5mH/1A, 744821150
	ERM02XX36X	MLCC	2200p. 1 1 0ap.	
	ERM00XX110X;		2200pF Y1 Cap.	5mH/1A, 744821150
Class A	ERM02XX110X			
	ERM01XX18X;		2200pF Y1 Cap.	175µH/10A, 74482210002
	ERM04XX18X;			
	ERM01XX36X;	2200pF Y1 Cap.		
	ERM04XX36X;	2200pr 11 Cap.		
	ERM01XX110X;			
	ERM04XX110X			

(2) EFT & Surge Solution:

To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required. Suggested capacitor as below:

Model	Suggested capacitor
ERM00XX18X; ERM02XX18X	CHEMI-CON KY Series 390uF/63V
ERM01XX18X; ERM04XX18X;	CHEMI-CON KY Series 390uF/63V

(3)Package Specifications:



Pin Connections					
Pin	Single Output	Dual Output			
1	+Vin	+Vin			
2 -Vin		-Vin			
3	Remote	Remote			
<u> </u>	On/Off	On/Off			
4 +Vout		+Vout			
5	Trim	Common			
6 -Vout		-Vout			

- ►All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

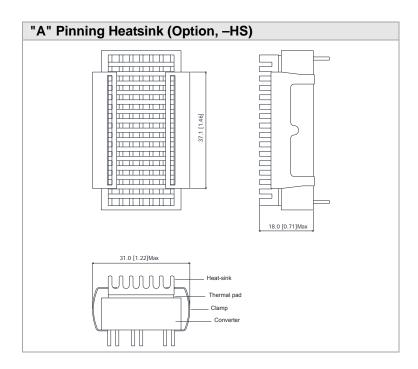
▶Pin diameter ⇔ 1.0 ±0.05 (0.04±0.002)

Pin Connections					
Pin Single Output		Dual Output			
1	+Vin	+Vin			
2 -Vin		-Vin			
	Remote	Remote			
3	On/Off	On/Off			
4	+Vout	+Vout			
5	-Vout	Common			
6	Trim	-Vout			

- ▶All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

▶Pin diameter ⇔ 1.0 ±0.05 (0.04±0.002)



Heatsink (Option, -HS) 18.0 [0.71]Max 31.0 [1.22]Max WWW

Physical Characteristics Heatsink Material Aluminum Black Anodized Finish Coating Weight 9g ▶The advantages of adding a heatsink are: 1. To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures. 2. To increase operating temperature of the DC/DC

converter, please refer to Derating Curve.

Reference No.: T160519N02-E1 Report No: T170223N03-E

4 TEST METHODOLOGY

4.1. DECISION OF FINAL TEST MODE

The EUT was tested together with the above additional components, and a configuration, which produced the worst emission levels, was selected and recorded in this report.

The test configuration/ modes are as the following:

Conduction (Power port) Modes: (Full Load)

1.	ERM00CC18-HS	5.	ERM01CC18-HS
2.	ERM02A18-HS	6.	ERM04A18-HS
3.	ERM00CC110-HS	7.	ERM01CC110-HS
4.	ERM02A110-HS	8.	ERM04A110-HS

Conduction (Analogue/Digital Data Ports) Modes

1.	Non
	14011

Radiation Modes: (Below 1GHz) (Full Load)

1.	ERM00CC18-HS	5.	ERM01CC18-HS
2.	ERM02A18-HS	6.	ERM04A18-HS
3.	ERM00CC110-HS	7.	ERM01CC110-HS
4.	ERM02A110-HS	8.	ERM04A110-HS

Radiation Modes: (Above 1GHz) (Full Load)

1.

Immunity Modes: (Full Load)

1.	ERM02A18-HS	2.	ERM04A18-HS
----	-------------	----	-------------

4.2. EUT SYSTEM OPERATION

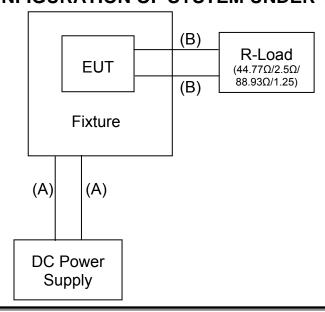
- 1. Setup a whole system for test as shown on setup diagram.
- 2. Turn on power and check function.
- 3. Start to test by test mode.

SETUP OF EQUIPMENT UNDER TEST 5

5.1. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Peripherals Devices:


No.	Product	Manufacturer	Model No.	Certify No.	Signal cable	
1	Dlood	NI/A	44.77Ω	DOC	For Model: ERM00CC18-HS \	
'	R-Load	N/A	44.7712	DOC	ERM00CC110-HS	
1	Dlood	N/A	2.50	2.5Ω DOC	For Model: ERM02A18-HS \	
1	R-Load		2.512		ERM02A110-HS	
1	Dlood	NI/A	00.020	DOC	For Model: ERM01CC18-HS \	
'	R-Load N/A 88.93Ω DOC	DOC	ERM01CC110-HS			
	Dlood	N/A 1.25Ω	D.LI. N/A 4.050 D00	4.050	DOC	For Model: ERM04A18-HS \
'	R-Load		1.∠5Ω	DOC	ERM04A110-HS	

No.	Signal cable description					
Α	DC IN cable	Unshielded, 0.3m, 2pcs.				
В	DC OUT cable	Unshielded, 0.15m, 2pcs.				

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

5.2. CONFIGURATION OF SYSTEM UNDER TEST

6 FACILITIES AND ACCREDITATIONS

6.1. FACILITIES

All measurement facilities used to collect the measurement data are located at CCS Taiwan Tainan Lab. and Xindian Lab. at

No.8, Jiucengling, Xinhua Dist., Tainan City 712, Taiwan (R.O.C.)

Xindian Lab. at No.163-1, Jhongsheng Rd., Xindian Dist., New Taipei City, 23151 Taiwan.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR 16-1-1, CISPR 16-1-2, CISPR 16-1-3, CISPR 16-1-4 and CISPR 16-1-5.

6.2. ACCREDITATIONS

Our laboratories are accredited and approved by the following accreditation body according to ISO/IEC 17025.

Taiwan TAF

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada Industry Canada

Germany TUV NORD

Taiwan BSMI USA FCC

Copies of granted accreditation certificates are available for downloading from our web site, http://www.ccsrf.com

6.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measu	rement	Frequency	Uncertainty
Power Line Con-	ducted Emission	9kHz~30MHz	±1.39dB
Conduction	ISN	150kHz~30MHz	±2.56dB
Emission	T-ISN	150kHz~30MHz	±2.56dB
	Test Site : OATS-5	30 MHz ~200 MHz	±4.04dB
	Test Site . OATS-5	200 MHz ~1000 MHz	±3.78dB
Radiated Emission	Test Site : OATS-6	30 MHz ~200 MHz	±3.27dB
(10m)	lest site . OATS-0	200 MHz ~1000 MHz	±2.68dB
	Test Site : OATS-7	30 MHz ~200 MHz	±3.56dB
	lest site . OATS-7	200 MHz ~1000 MHz	±3.25dB
	Test Site : OATS-5	30 MHz ~200 MHz	±3.45dB
	lest site . OATS-5	200 MHz ~1000 MHz	±2.55dB
Radiated Emission	Test Site : OATS-6	30 MHz ~200 MHz	±3.55dB
(3m)	TEST SITE . UATS-0	200 MHz ~1000 MHz	±2.35dB
	Test Site : OATS-7	30 MHz ~200 MHz	±3.55dB
	TEST SILE . UATS-1	200 MHz ~1000 MHz	±2.33dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Consistent with industry standard (e.g. CISPR 22: 2008+I3: 2012, clause 11, Measurement Uncertainty) determining compliance with the limits shall be base on the results of the compliance measurement. Consequently the measure emissions being less than the maximum allowed emission result in this be a compliant test or passing test.

The acceptable measurement uncertainty value without requiring revision of the compliance statement is base on conducted and radiated emissions being less than U_{CISPR} which is 3.6dB and 5.2dB respectively. CCS values (called U_{Lab} in CISPR 16-4-2) is less than U_{CISPR} as shown in the table above. Therefore, MU need not be considered for compliance.

7 EMISSION TEST

7.1. CONDUCTED EMISSION MEASUREMENT

7.1.1. **LIMITS**

EDECLIENCY (MU-)	Class A (dBuV)		Class B (dBuV)	
FREQUENCY (MHz)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	79	66	66 - 56	56 - 46
0.50 - 5.0	73	60	56	46
5.0 - 30.0	73	60	60	50

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

7.1.2. TEST INSTRUMENTS

Conducted Emission room #1						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
BNC Coaxial Cable	ccs	BNC50	11	12/04/2016		
EMI Test Receiver	R&S	ESCS 30	100348	12/03/2016		
LISN	SCHWARZBECK	NNLK8130	8130124	10/27/2016		
LISN	Schwarzbeck	NSLK 8127	8127526	08/23/2016		
Pulse Limiter	R&S	ESH3-Z2	100116	12/04/2016		
Software		e-3 (5.04211j)				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

7.1.3. TEST PROCEDURES

Procedure of Preliminary Test

The EUT and Support equipment, if needed, was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per EN 55032 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor standing equipment, it is placed on the ground plane, which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.

All I/O cables were positioned to simulate typical actual usage as per EN 55032.

The test equipment EUT installed received main power, through a Line Impedance Stabilization Network (LISN), which supplied power source and was grounded to the ground plane.

All support equipment power received from a second LISN.

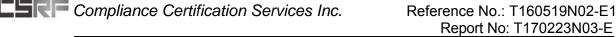
The EUT test program was started. Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150kHz to 30MHz for emissions in each of the test modes.

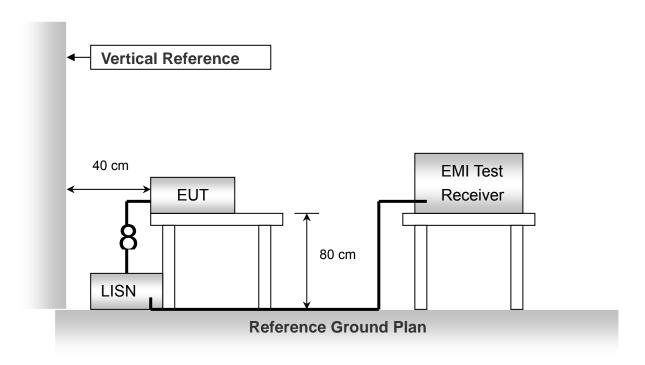
During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in Item 4.1 were scanned during the preliminary test.

After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.


The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test


EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

The test data of the worst-case condition(s) was recorded.

7.1.4. **TEST SETUP**

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.1.5. **DATA SAMPLE**

Freq. (MHz)	LISN Factor (dB)	Cable Loss (dB)	Meter Reading (dBuV)	Measured Level (dBuV)	Limits (dBuV)	Over Limits (dBuV)	Detector
x.xx	9.6	0.1	15.7	25.4	46	-20.6	QP

Freq. = Emission frequency in MHz

LISN Factor = Insertion loss of LISN and Pulse Limiter

= Insertion loss of Cable (LISN to EMI Tester Receiver) Cable Loss

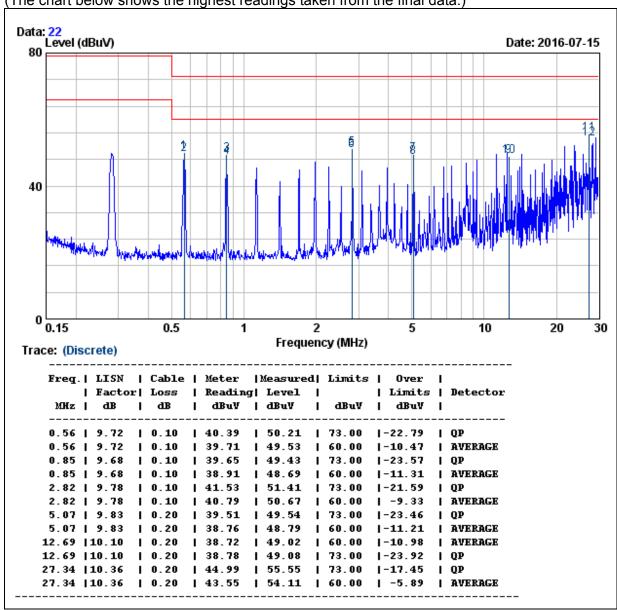
Meter Reading = Uncorrected Analyzer/Receiver reading

Measured Level = Read Level + Factor Limit = Limit stated in standard Over Limit = Reading in reference to limit

= Peak Reading Peak QΡ = Quasi-peak Reading AV= Average Reading

Calculation Formula

- 1. Measured Level (dBuV) = LISN Factor (dB) + Cable Loss (dB)+ Meter Reading (dBuV)
- 2. Over Limit (dBuV) = Measured Level (dBuV) Limits (dBuV)



7.1.6. **TEST RESULTS**

Model No.	ERM00CC18-HS	Test Mode	Full Load
Environmental Conditions	IZD (: 50% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

LINE

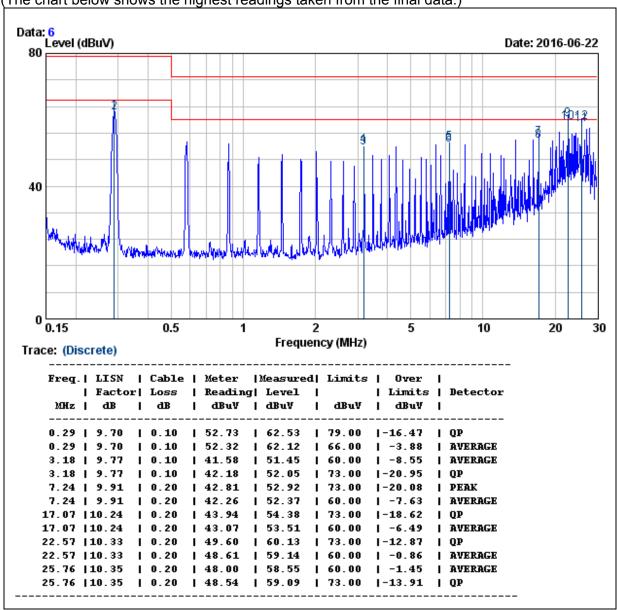
(The chart below shows the highest readings taken from the final data.)


Note:

- 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)
- 2. Over Limit value (dB) = Level (dBuV) Limit Line (dBuV)

Model No.	ERM00CC18-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

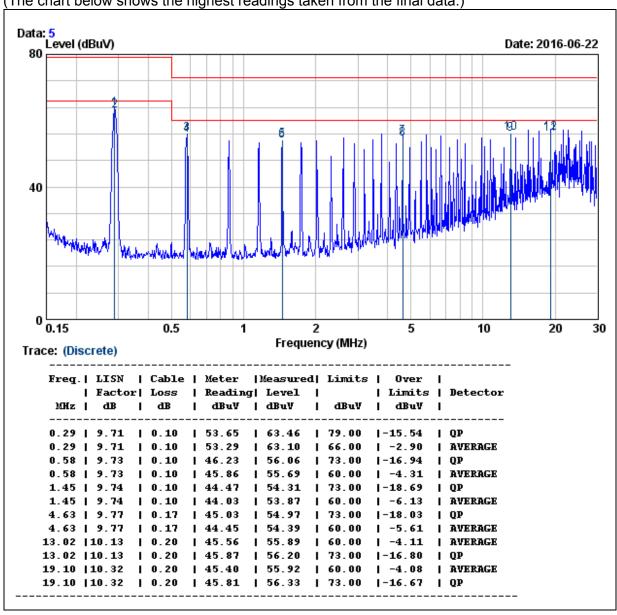
(The chart below shows the highest readings taken from the final data.)


Note: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM02A18-HS	Test Mode	Full Load
Environmental Conditions	IZN (SNW RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

LINE

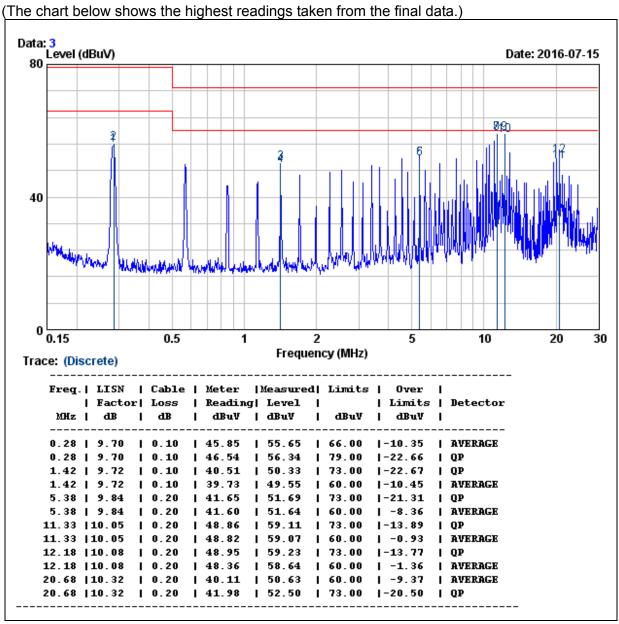
(The chart below shows the highest readings taken from the final data.)



1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) Note:

Model No.	ERM02A18-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by:	Peter Chu		

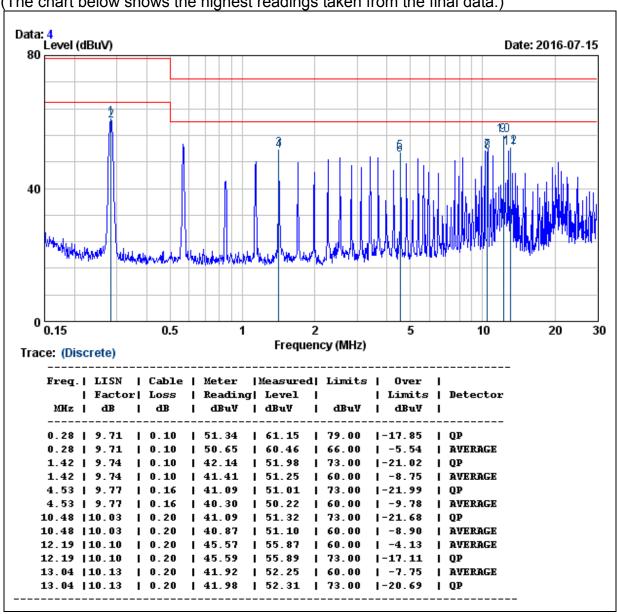
(The chart below shows the highest readings taken from the final data.)



Note: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM00CC110-HS	Test Mode	Full Load
Environmental Conditions	IZN (SN% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

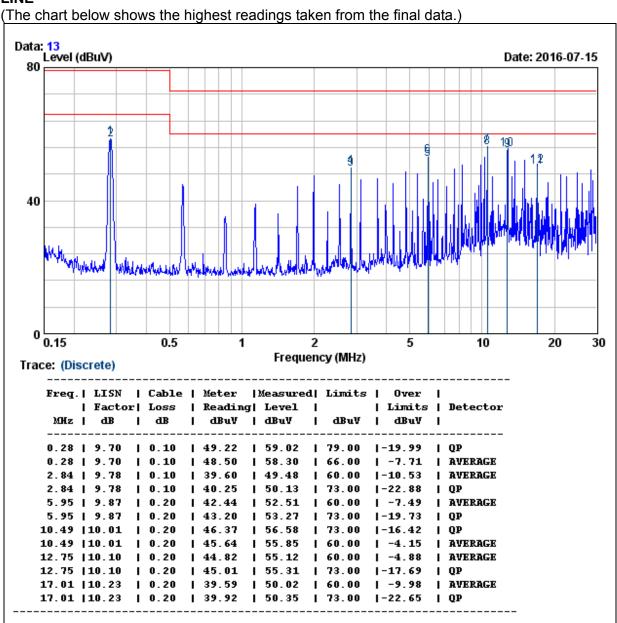
LINE



1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) Note:

Model No.	ERM00CC110-HS	Test Mode	Full Load
Environmental Conditions	12h (Resolution Bandwidth	9 kHz
Tested by:	Peter Chu		

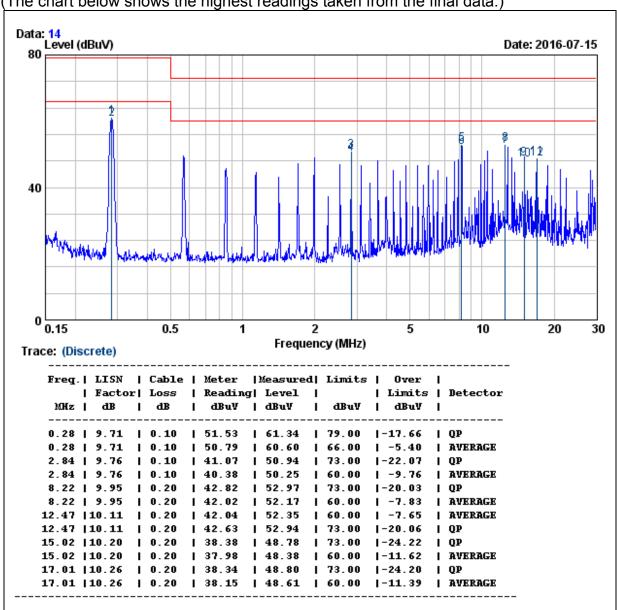
(The chart below shows the highest readings taken from the final data.)



1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM02A110-HS	Test Mode	Full Load
Environmental Conditions	IZN (SNW RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

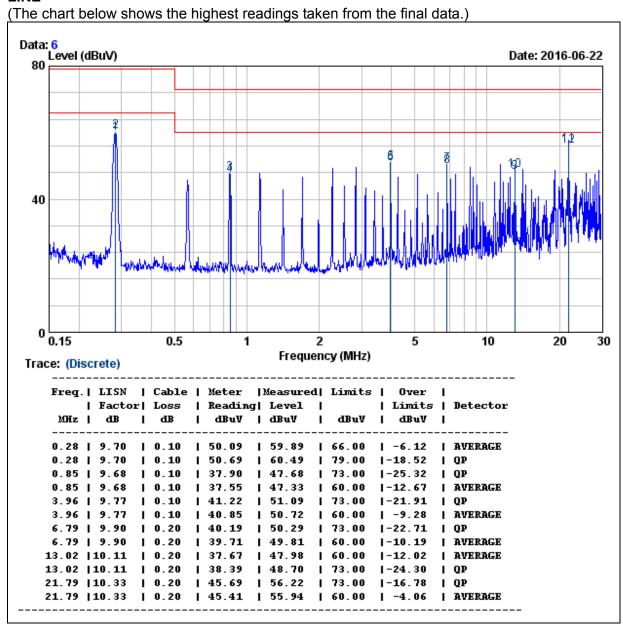
LINE



1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM02A110-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by:	Peter Chu		

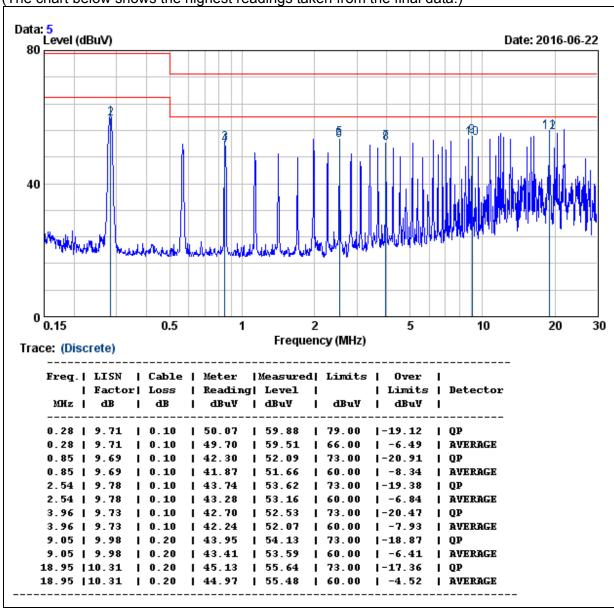
(The chart below shows the highest readings taken from the final data.)



Note: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM01CC18-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

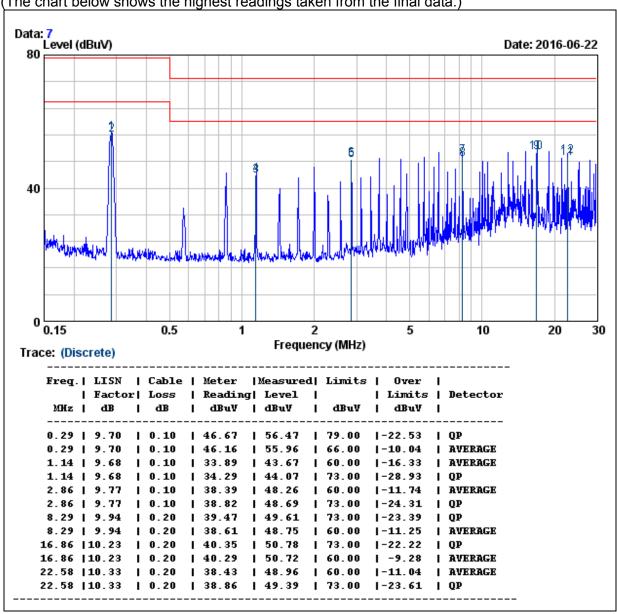
LINE


Note:

- 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)
- 2. Over Limit value (dB) = Level (dBuV) Limit Line (dBuV)

Model No.	ERM01CC18-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

(The chart below shows the highest readings taken from the final data.)


1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) Note:

Model No.	ERM04A18-HS	Test Mode	Full Load
Environmental Conditions	1/h (' hh% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

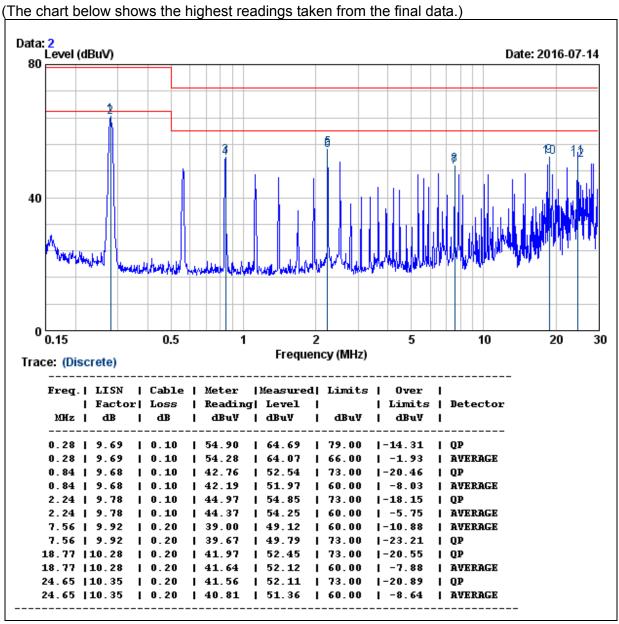
LINE

(The chart below shows the highest readings taken from the final data.)

1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) Note:

Model No.	ERM04A18-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by:	Peter Chu		

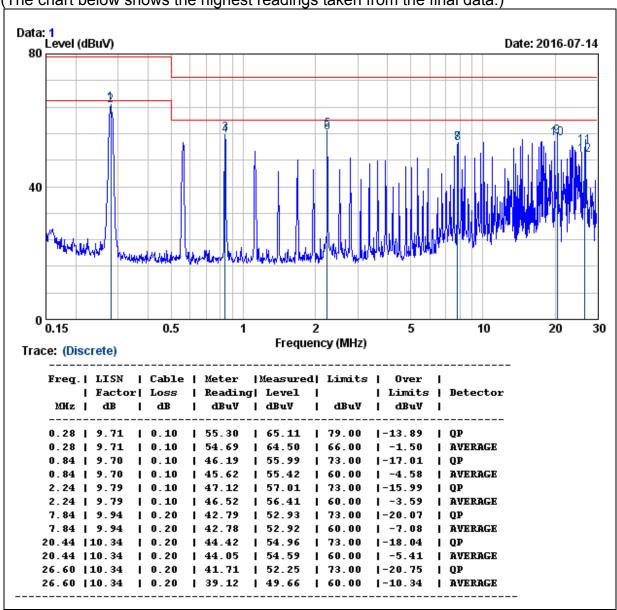
(The chart below shows the highest readings taken from the final data.)



Note: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM01CC110-HS	Test Mode	Full Load
Environmental Conditions	IZN (SN KH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

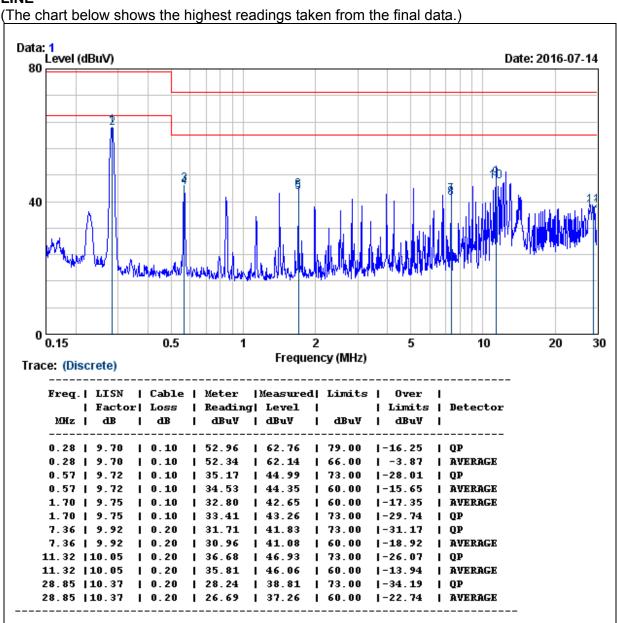
LINE



1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) Note:

Model No.	ERM01CC110-HS	Test Mode	Full Load
Environmental Conditions	12h (` 5h% RH	Resolution Bandwidth	9 kHz
Tested by:	Peter Chu		

(The chart below shows the highest readings taken from the final data.)

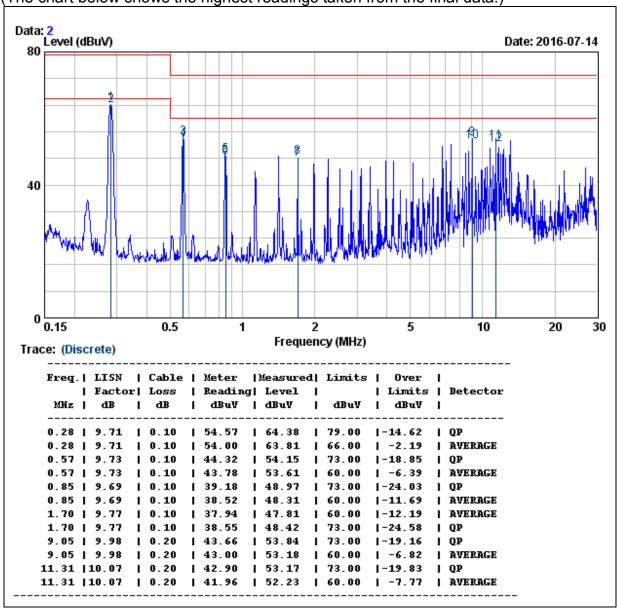


1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

Model No.	ERM04A110-HS	Test Mode	Full Load
Environmental Conditions	IZN (SN% RH	Resolution Bandwidth	9 kHz
Tested by	Peter Chu		

LINE

1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB) Note:


2. Over Limit value (dB) = Level (dBuV) – Limit Line (dBuV)

Model No. ERM04A110-HS Full Load **Test Mode Environmental** Resolution 26°C, 56% RH 9 kHz Conditions Bandwidth Peter Chu Tested by:

NEUTRAL

(The chart below shows the highest readings taken from the final data.)

Note: 1. Level (dBuV) = Read Level (dBuV) + LISN Factor (dB) + Cable Loss (dB)

2. Over Limit value (dB) = Level (dBuV) – Limit Line (dBuV)

7.2. CONDUCTED EMISSION MEASUREMENT AT ANALOGUE/DIGITAL DATA PORTS

7.2.1. **LIMITS**

For Class A Equipment

FREQUENCY (MHz)	Voltage L	imit (dBuV)	Current L	imit (dBuA)
FREQUENCY (WIHZ)	Quasi-peak	Average	Quasi-peak	Average
0.15 ~ 0.5	97 ~ 87	84 ~ 74	53 ~ 43	40 ~ 30
0.5 ~ 30.0	87	74	43	30

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz. For Class B Equipment

FREQUENCY (MHz)	Voltage L	imit (dBuV)	Current Limit (dBuA)	
FREQUENCY (WIHZ)	Quasi-peak	Average	Quasi-peak	Average
0.15 - 0.5	84 ~ 74	74 ~ 64	40 ~ 30	30 ~ 20
0.5 - 30.0	74	64	30	20

Note: The limits decrease linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

7.2.2. TEST INSTRUMENTS

	Conducted Emission room # 1						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
BNC Coaxial Cable	ccs	BNC50	11	12/04/2016			
EMI Test Receiver	R&S	ESCS 30	100348	12/03/2016			
Four BALACED PAIR ISN	FCC	F-071115-1057-1-0 9	111130	11/08/2016			
LISN	SCHWARZBECK	NNLK8130	8130124	10/27/2016			
LISN	Schwarzbeck	NSLK 8127	8127526	08/23/2016			
Pulse Limiter	R&S	ESH3-Z2	100116	12/04/2016			
Software		e-3 (5.04211j)					

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R = No Calibration Request.

TEST PROCEDURE 7.2.3.

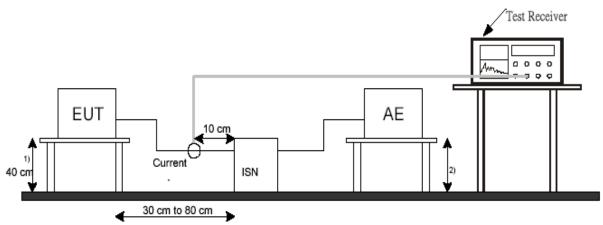
Selecting ISN for unscreened cable or a current probe for screened cable to take measurement.

The port of the EUT was connected to the remote side support equipment through the ISN/Current Probe and communication in normal condition.

Making a overall range scan by using the test receiver controlled by controller and record at least six highest emissions for showing in the test report.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

In case of measuring on the screened cable, the current limit shall be applied; otherwise the voltage limit should be applied.


The following test modes was scanned during the preliminary test:

N/A

After the preliminary scan, we found the following test mode(s) producing the highest emission level and test data of the worst case was recorded.

N/A

TEST SETUP 7.2.4.

- 1) Distance to the ground reference plane (vertical or horizontal).
- 2) Distance to the ground reference plane is not critical.

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.2.5. DATA SAMPLE

Freq. (MHz)	LISN Factor (dB)	Cable Loss (dB)	Meter Reading ()dBuV	Measured Level (dBuV)	Limits (dBuV)	Over Limits (dBuV)	Detector
x.xx	9.71	0.02	37.17	46.9	66	-19.10	QP

Freq. = Emission frequency in MHz

= Insertion loss of ISN and Pulse Limiter

LISN Factor Cable loss = Insertion loss of Cable (ISN to EMI Tester Receiver)

Meter Reading = Uncorrected Analyzer/Receiver reading

Measured Level = Read Level + Factor Limit = Limit stated in standard = Reading in reference to limit Over Limit

Peak = Peak Reading QΡ = Quasi-peak Reading AV= Average Reading

Calculation Formula

Over Limit (dB) = Level (dBuV) – Limit (dBuV)

7.2.6. **TEST RESULTS**

*Note: Not applicable, the EUT doesn't have LAN Port or Modem port.

7.3. RADIATED EMISSION MEASUREMENT

7.3.1. LIMITS

Below 1GHz

FREQUENCY (MHz)	dBuV/m (At 10m)		
FREQUENCT (WIRZ)	Class A	Class B	
30 ~ 230	40	30	
230 ~ 1000	47	37	

Note: The lower limit shall apply at the transition frequencies.

Above 1GHz

FREQUENCY (MHz)	Class A (dBu	ıV/m) (At 3m)	Class B (dBuV/m) (At 3m)		
PREQUENCT (WHZ)	Average	Peak	Average	Peak	
1000 ~ 3000	56	76	50	70	
3000 ~ 6000	60	80	54	74	

Note: The lower limit shall apply at the transition frequencies.

According to EN55032:2012+AC:2013, the measurement frequency range shown in the following table:

Highest frequency generated or used within the EUT	Upper frequency of measurement range
or on which the EUT operates or tunes (MHz)	(MHz)
Less than 108	1000
108-500	2000
500-1000	5000
Above 1000	5 times of the highest frequency or 6GHz,
Above 1000	whichever is less

7.3.2. TEST INSTRUMENTS

Open Area Test Site # 5

Open Area Test Site # 5								
Name of Equipment Manufacturer Model Serial Number Calibration Du								
Bi-Log Antenna	Sunol	JB1	A070506-1	01/24/2017				
EMI Test Receiver	R&S	ESCI 7	100856	11/18/2016				
Type N coxical cable	Suhner	RG_214_U/2X	5	12/02/2016				
Software	e3 (5.04211j)							

Open Area Test Site # 7

Open Area Test Site # 7							
Name of Equipment Manufacturer Model Serial Number Calibration D							
Bi-Log Antenna	Sunol	JB1	A013105-1	08/09/2016			
EMI Test Receiver	R&S	ESCI	101336	03/21/2017			
Type N coxical cable	Suhner	RG_214_U/2X	7	12/02/2016			
Software	e3 (5.04211j)						

	Above 1GHz Used								
Name of Equipment Manufacturer Model Serial Number Calibrat									
EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY54430216	04/29/2017					
Horn Antenna	Com-Power	AH-118	071032	01/20/2017					
Pre-Amplifier	EMCI	EMC012645	980098	01/17/2017					

Note:

- The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R. = No Calibration Request.

7.3.3. **TEST PROCEDURE**

Procedure of Preliminary Test

The equipment was set up as per the test configuration to simulate typical usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane. When the EUT is a floor standing equipment, it is placed on the ground plane which has a 15 cm non-conductive covering to insulate the EUT from the ground plane.

Support equipment, if needed, was placed as per EN 55032.

All I/O cables were positioned to simulate typical usage as per EN 55032.

The EUT received power source from the outlet socket under the turntable. All support equipment power received from another socket under the turntable.

The antenna was placed at 10/3 meter away from the EUT as stated in EN 55032. The antenna connected to the Spectrum Analyzer via a cable and at times a pre-amplifier would be used.

The Analyzer / Receiver guickly scanned from 30MHz to 6000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

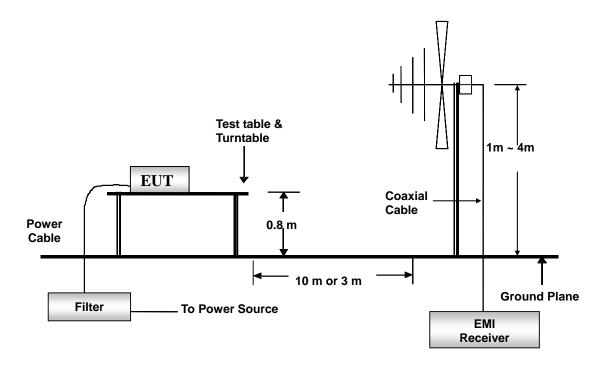
The test mode(s) described in Item 4.1 were scanned during the preliminary test:

After the preliminary scan, we found the test mode described in Item 4.1 producing the highest emission level.

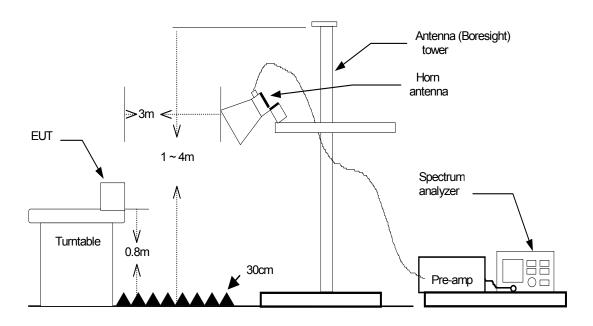
The EUT and cable configuration, antenna position, polarization and turntable position of the above highest emission level were recorded for the final test.

Procedure of Final Test

EUT and support equipment were set up on the turntable as per the configuration with highest emission level in the preliminary test.


The Analyzer / Receiver scanned from 30MHz to 6000MHz. Emissions were scanned and measured rotating the EUT to 360 degrees, varying cable placement and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.

Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and only Q.P. reading is presented.


The test data of the worst-case condition(s) was recorded.

7.3.4. TEST SETUP

Below 1 GHz

Above 1 GHz

For the actual test configuration, please refer to the related item – Photographs of the Test Configuration.

7.3.5. DATA SAMPLE

Freq. (MHz)	Reading (dBuV/m)	Antenna Factor (dB)	Cable loss (dB)	Measure level (dBuV/m)	Limit (dBu/m)	Over limit (dBuV/m)	Detector
X.XX	24.48	7.33	1.50	33.31	40	-6.69	QP

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading

Antenna Factor = Antenna Factor

Cable loss = Insertion loss of cable

Measure level = Reading + Factor

Limit = Limit stated in standard

Over limit = Measure level – Limit

Peak = Peak Reading QP = Quasi-peak Read

QP = Quasi-peak Reading AV = Average Reading

Calculation Formula

Over limit (dBuV/m) = Result (dBuV/m) - Limit (dBuV/m)

Above 1GHz

Freq.	Reading	AF	C loss	Pre-amp	Filter	Level	Limit	Margin	Mark
(MHz)	(dBµV)	(dBµV)	(dB)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(P/Q/A)
XXXX. XX	56.00	25.14	2.07	41.77	0.72	42.16	70.00	-27.84	Р

Freq. = Emission frequency in MHz

Reading = Uncorrected Analyzer/Receiver reading

AF = Antenna Factor

C loss = Insertion loss of cable Pre-amp = Pre-amplifier Gain Filter = Insertion loss of filter

Level = Reading+AF+C loss-Pre-amp+Filter

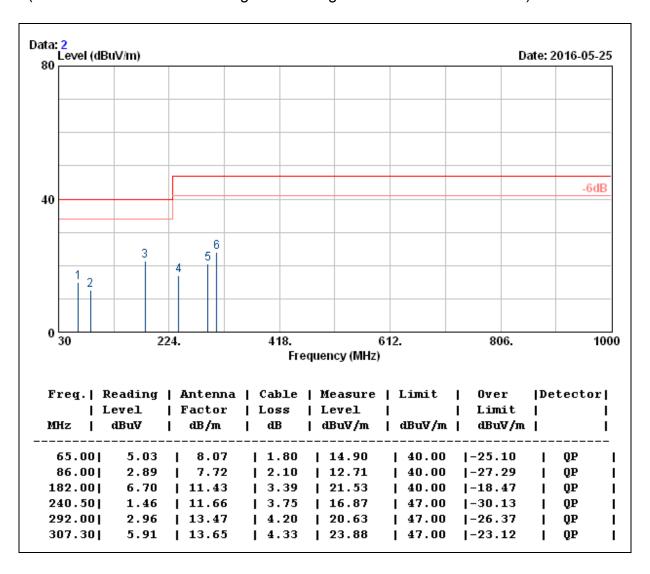
Limit = Limit stated in standard
Margin = Reading in reference to limit

Mark: P = Peak Reading

Q = Quasi-peak ReadingA = Average Reading

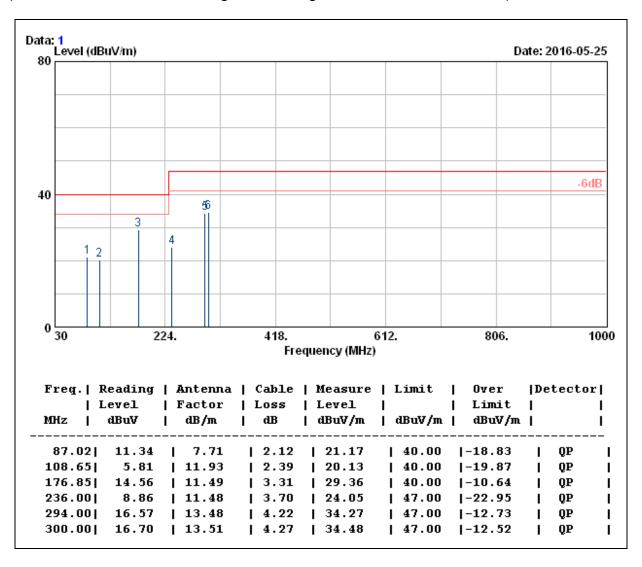
Calculation Formula

Margin (dB) =Level (dBuV/m) – Limit (dBuV/m)

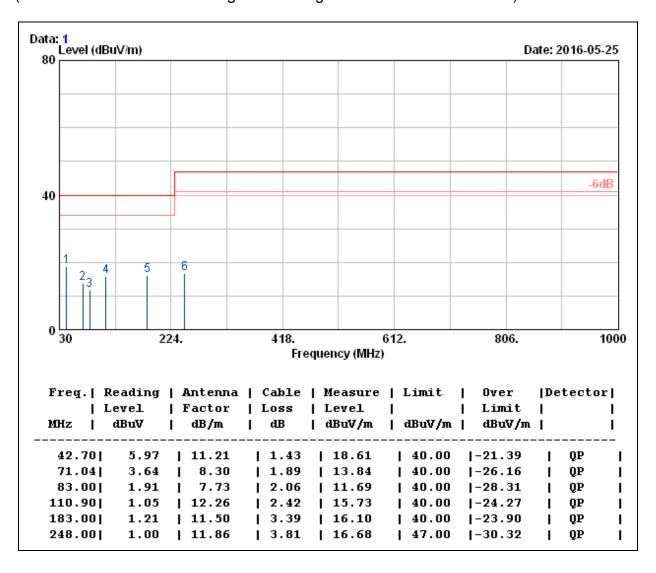


7.3.6. **TEST RESULTS**

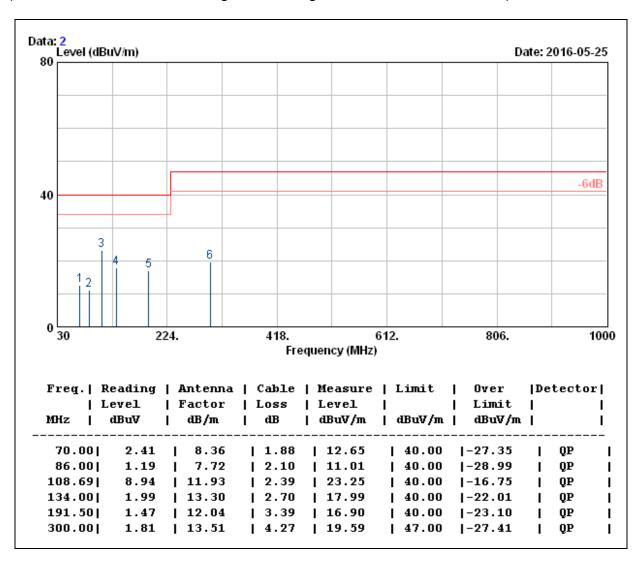
Below 1GHz


Model No.	ERM00CC18-HS	Test Mode	Full Load
Environmental Conditions	1/h X (* 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Weici Lo

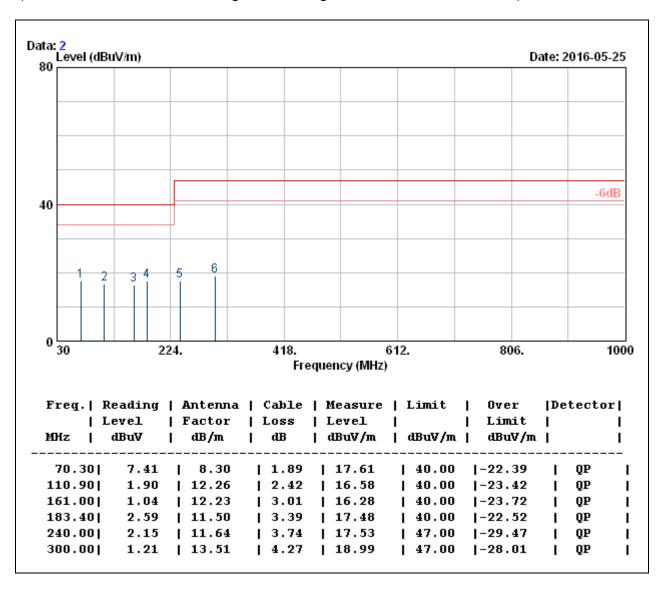
(The chart below shows the highest readings taken from the final data.)



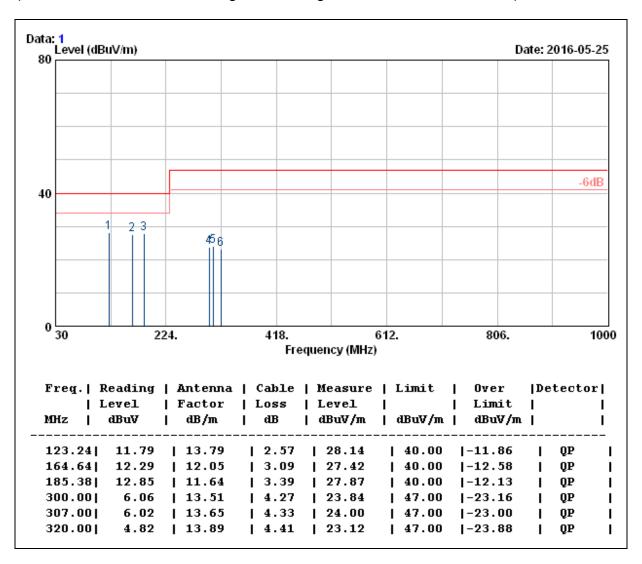
Model No.	ERM00CC18-HS	Test Mode	Full Load
Environmental Conditions	1/0 8 (54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	IHOrizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Weici Lo



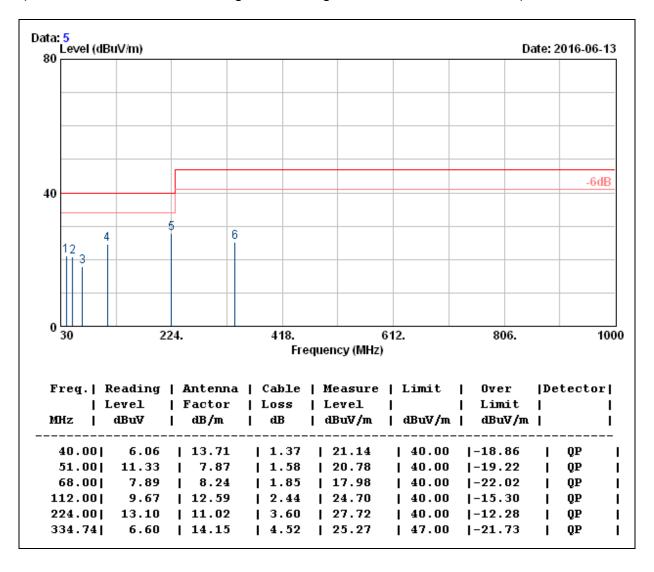
Model No.	ERM02A18-HS	Test Mode	Full Load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested By	Weici Lo



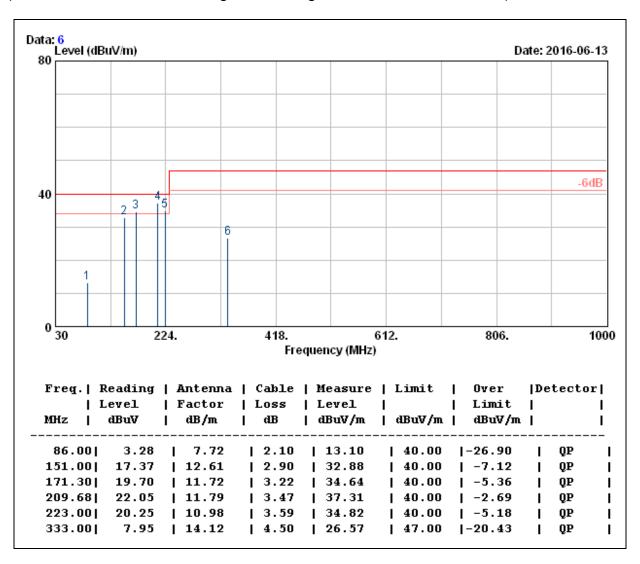
Model No.	ERM02A18-HS	Test Mode	Full load
Environmental Conditions	12h 8 (* 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested By	Weici Lo



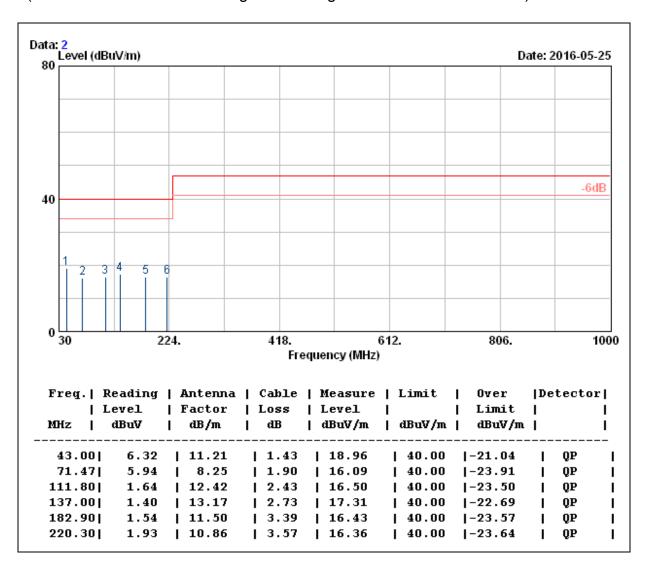
Model No.	ERM00CC110-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested By	Weici Lo



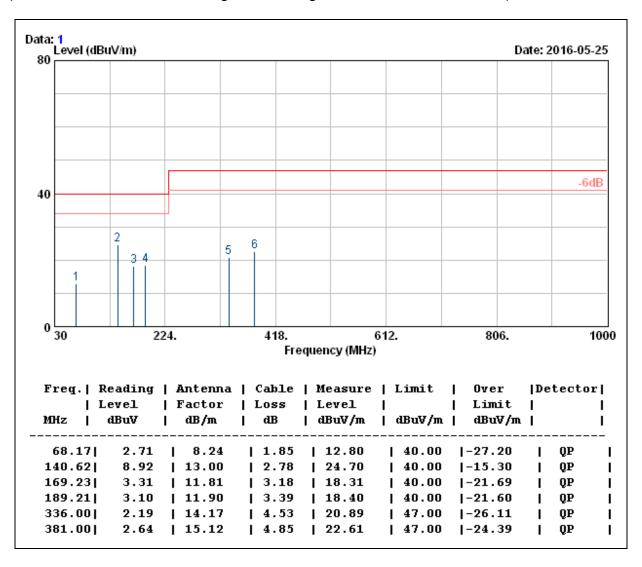
Model No.	ERM00CC110-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested By	Weici Lo



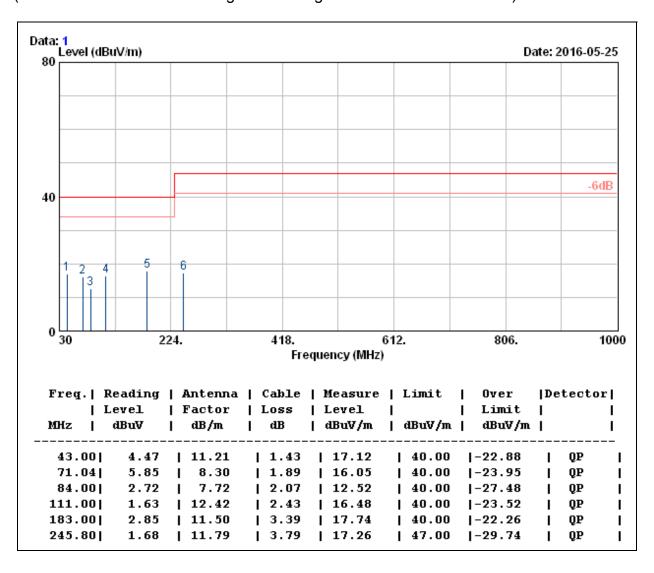
Model No.	ERM02A110-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested By	Weici Lo



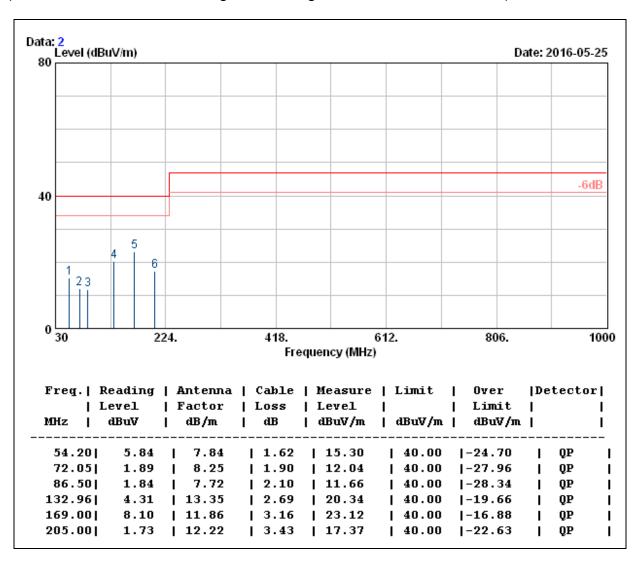
Model No.	ERM02A110-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested By	Weici Lo



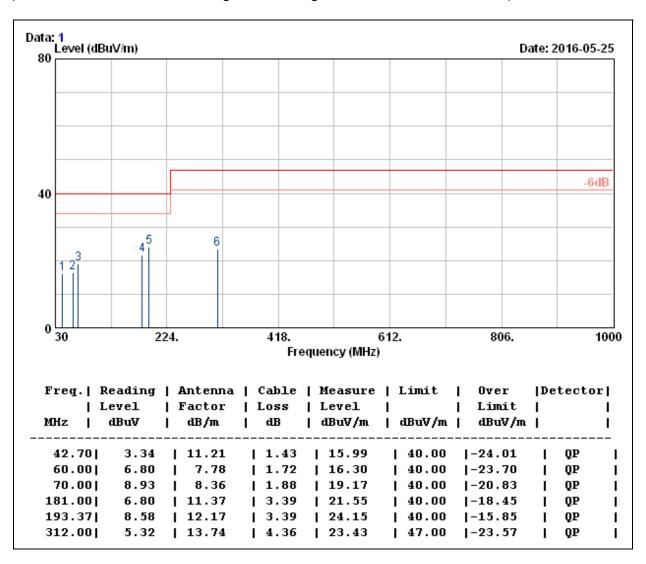
Model No.	ERM01CC18-HS	Test Mode	Full Load
Environmental Conditions	12h 8 (* 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	IVertical	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Weici Lo



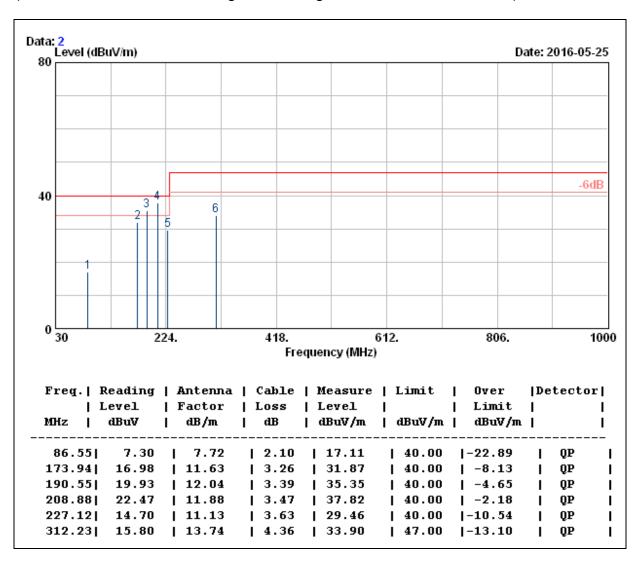
Model No.	ERM01CC18-HS	Test Mode	Full Load
Environmental Conditions	1/0 8 (54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	IHORIZONIAI	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested by	Weici Lo



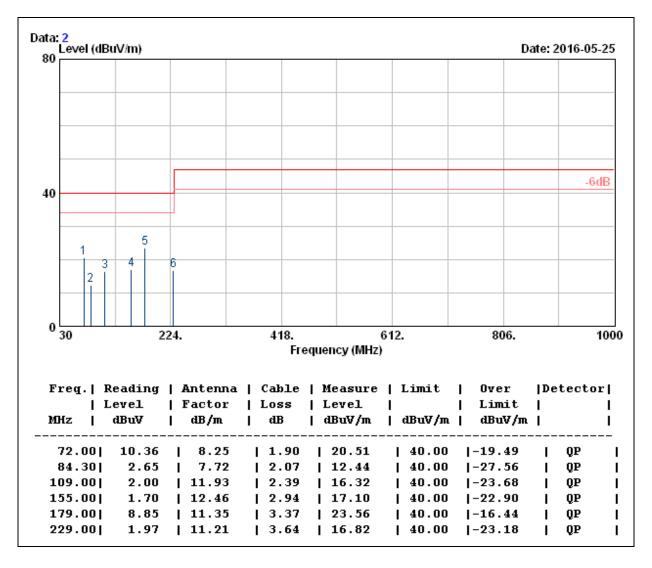
Model No.	ERM04A18-HS	Test Mode	Full Load
Environmental Conditions	126 8 (54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested By	Weici Lo



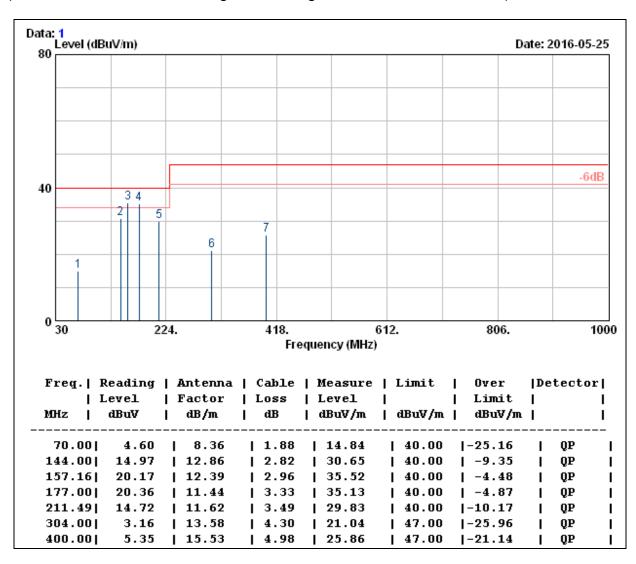
Model No.	ERM04A18-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested By	Weici Lo



Model No.	ERM01CC110-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested By	Weici Lo



Model No.	ERM01CC110-HS	Test Mode	Full load
Environmental Conditions	126 8 (54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested By	Weici Lo



Model No.	ERM04A110-HS	Test Mode	Full load
Environmental Conditions	12h 8 (* 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Vertical	Antenna Distance	10m
Detector Function:	Quasi-peak.	Tested By	Weici Lo

Model No.	ERM04A110-HS	Test Mode	Full load
Environmental Conditions	26.8℃, 54% RH	Resolution Bandwidth	120 kHz
Antenna Pole	Horizontal	Antenna Distance	10m
Detector Function	Quasi-peak.	Tested By	Weici Lo

(The chart below shows the highest readings taken from the final data.)

Note: 1.Level (dBuV/m) = Read Level (dBuV) + Antenna Factor (dB/m) + Cable loss (dB) 2.Over Limit value (dB) = Level (dBuV/m)-Limit Line(dBuV/m)

Above 1GHz

X Not applicable, since the highest frequency of the internal sources of the EUT is less than 108MHz, the measurement shall only be made up to 1 GHz.

7.4. HARMONICS CURRENT MEASUREMENT

7.4.1. LIMITS OF HARMONICS CURRENT MEASUREMENT

Limits for Class A equipment			
Harmonics	Max. permissible		
Order	harmonics current		
n	Α		
Od	d harmonics		
3	2.30		
5	1.14		
7	0.77		
9	0.40		
11	0.33		
13	0.21		
15<=n<=39	0.15x15/n		
Eve	en harmonics		
2	1.08		
4	0.43		
6	0.30		
8<=n<=40	0.23x8/n		

Limits for Class D equipment				
Harmonics Order n	Max. permissible harmonics current per watt mA/W	Max. permissible harmonics current A		
	Odd Harmonics only	/		
3	3.4	2.30		
5	1.9	1.14		
7	1.0	0.77		
9	0.5	0.40		
11	0.35	0.33		
13	0.30	0.21		
15<=n<=39	3.85/n	0.15x15/n		

Note:

- 1. Class A and Class D are classified according to item 7.4.3.
- 2. According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

7.4.2. TEST INSTRUMENTS

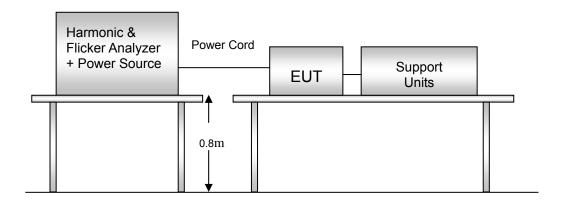
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Harmonic & Fliker Test	Tosog	Profline 2105(NSG	1504A02655	03/02/2017
System	Teseq	1007/CCN 1000-1)	1304A02033	03/02/2017
Coffus		H/F HA 16	000 PC LINK	
Software	Field Probe			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

Services Inc. Reference No.: T160519N02-E1
Report No: T170223N03-E

7.4.3. TEST PROCEDURE

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn.


The classification of EUT is according to section 5 of EN 61000-3-2.

The EUT is classified as follows:

- Class A: Balanced three-phase equipment, Household appliances excluding equipment as Class D, Tools excluding portable tools, Dimmers for incandescent lamps, audio equipment, equipment not specified in one of the three other classes.
- Class B: Portable tools; Arc welding equipment which is not professional equipment.
- Class C: Lighting equipment.
- Class D: Equipment having a specified power less than or equal to 600 W of the following types: Personal computers and personal computer monitors and television receivers.

The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the time necessary for the EUT to be exercised.

7.4.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.4.5. TEST RESULTS

Power Consumption	W	Test Results	
	°ℂ ,% RH, mbar	Limits	Class
Test Mode		Tested by	

Test result of EN 61000-3-2

****** This EUT is not connected to AC Source directly. Not applicable for this test.

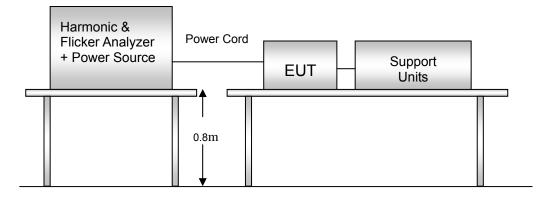
7.5. VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

7.5.1. LIMITS OF VOLTAGE FLUCTUATION AND FLICKER MEASUREMENT

TEST ITEM	LIMIT	REMARK
P_{st}	1.0	P _{st} means short-term flicker indicator.
P_{lt}	0.65	P _{lt} means long-term flicker indicator.
T _{dt} (ms)	500	T _{dt} means maximum time that dt exceeds 3 %.
d _{max} (%)	4%	d _{max} means maximum relative voltage change.
dc (%)	3.3%	dc means relative steady-state voltage change

7.5.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Harmonic & Fliker Test	Toogs	Profline 2105(NSG	1504A02655	03/02/2017
System	Teseq	1007/CCN 1000-1)	1504A02655	03/02/2017
Coffwara		H/F HA 16	000 PC LINK	
Software	Field Probe			


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

7.5.3. TEST PROCEDURE

The EUT was placed on the top of a wooden table 0.8 meters above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating conditions.

During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.5.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

7.5.5. TEST RESULTS

Observation Period (Tp)		Test Mode	
Environmental Conditions	°C,% RH,mbar	Tested by	

Test result of EN 61000-3-3

※ This EUT is not connected to AC Source directly. Not applicable for this test.

8 IMMUNITY TEST

8.1. GENERAL DESCRIPTION

Product Standard	EN 55024: 2010					
1 Toddet Standard	Test Type	Minimum Requirement				
	IEC 61000-4-2	Electrostatic Discharge - ESD: 8KV air discharge, 4kV Contact discharge, Performance Criterion B				
	IEC 61000-4-3	Radio-Frequency Electromagnetic Field Susceptibility Test - RS: 80 ~1000 MHz, 3V/m, 80% AM(1kHz), Performance Criterion A				
	IEC 61000-4-4	Electrical Fast Transient/Burst - EFT, AC Power Port: 1kV DC Power Port: 0.5kV Signal Ports and Telecommunication Ports: 0.5kV Performance Criterion B				
Basic Standard, Specification, and Performance Criterion required	IEC 61000-4-5	Surge Immunity Test: 1.2/50 us Open Circuit Voltage, 8/20 us Short Circuit Current, AC Power Port ~ line to line: 1kV,				
	IEC 61000-4-6	Conducted Radio Frequency Disturbances Test - CS: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A				
	IEC 61000-4-8	Power frequency magnetic field immunity test 50 Hz, 1A/m Performance Criterion A				
	IEC 61000-4-11	Voltage Dips: i) >95% reduction for 0.5 periods, Performance Criterion B ii) 30% reduction for 25 periods, Performance Criterion C Voltage Interruptions: >95% reduction for 250 periods Performance Criterion C				

8.2. GENERAL PERFORMANCE CRITERIA DESCRIPTION

Criteria A:	The apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	After test, the apparatus shell continues to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomenon below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance.
Criteria B:	During the test, degradation of performance is however allowed. However, no change of operating state if stored data is allowed to persist after the test. If the manufacturer does not specify the minimum performance level or the permissible performance loss, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
Criteria C:	Temporary loss of function is allowed, provided the functions is self-recoverable or can be restored by the operation of controls by the user in accordance with the manufacturer instructions.
	Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

8.3. ELECTROSTATIC DISCHARGE (ESD)

8.3.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-2

Discharge Impedance: 330 ohm / 150 pF

Discharge Voltage: Air Discharge: 2, 4, 8 kV (Direct)

Contact Discharge: 4, 6 kV (Direct/Indirect)

Polarity: Positive & Negative

Number of Discharge: Air Discharge: min. 10 times at each test point for each polarity

Contact Discharge: min. 200 times in total

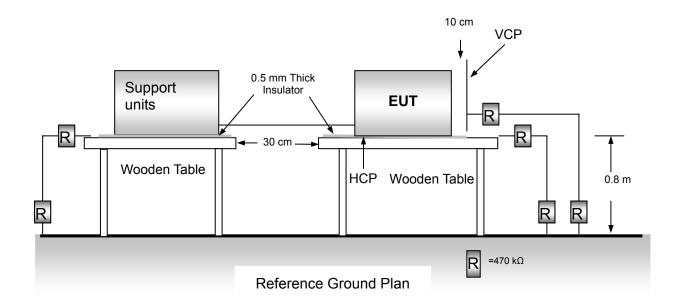
Discharge Mode: Single Discharge 1 second minimum

8.3.2. TEST INSTRUMENT

IMMUNITY SHIELDED ROOM								
Name of Equipment	Calibration Due							
ESD Simulator	NoiseKen	TC-815R	ESS1366835	08/24/2016				
ESD Simulator	NoiseKen	ESS-2002	ESS04Z3762	08/14/2016				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

8.3.3. TEST PROCEDURE


The discharges shall be applied in two ways:

- a) Contact discharges to the conductive surfaces and coupling planes:
 - The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points. One of the test points shall be subjected to at least 50 indirect discharges to the center of the front edge of the Horizontal Coupling Plane (HCP). The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.
- b) Air discharges at slots and apertures and insulating surfaces:
 - On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum of 10 single air discharges shall be applied to the selected test point for each such area.

The basic test procedure was in accordance with IEC 61000-4-2:

- a) The EUT was located 0.1 m minimum from all side of the **HCP** (dimensions 1.6m x 0.8m).
- b) The support units were located another table 30 cm away from the EUT, but direct support unit was/were located at same location as EUT on the HCP and keep at a distance of 10 cm with EUT.
- c) The time interval between two successive single discharges was at least 1 second.
- d) Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- e) Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- f) At least ten single discharges (in the most sensitive polarity) were applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1 meters from the front of the EUT. The long axis of the discharge electrode was in the plane of the HCP and perpendicular to its front edge during the discharge.
- g) At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane (VCP) in sufficiently different positions that the four faces of the EUT were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

8.3.4. **TEST SETUP**

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with 940kohm total impedance. The equipment under test, was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

FLOOR-STANDING EQUIPMENT

The equipment under test was installed in a representative system as described in section 7 of IEC 61000-4-2, and its cables were isolated from the Ground Reference Plane by an insulating support of 0.1-meter thickness. The GRP consisted of a sheet of aluminum that is at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system and extended at least 0.5 meters from the EUT on all sides.

8.3.5. **TEST RESULTS**

Model: ERM02A18-HS

Temperature	23°C	Humidity	45% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Pas	ssing Performance		Criterion B

Air Discharge								
	T	est Level	t Levels			Results		
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion		
Front						□ A □ B		
Back						□A □B		
Left						□А □В		
Right						□A □B		
Тор						□ A □ B		
Bottom						⊠A □B		

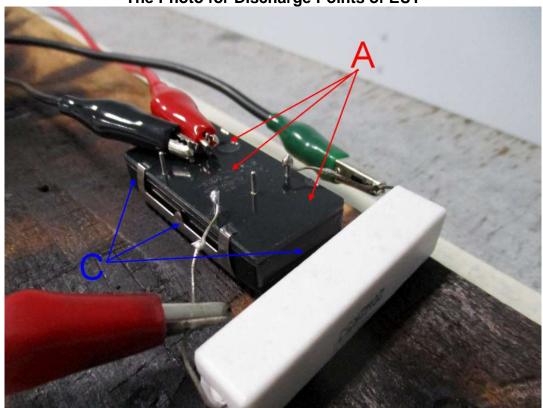
Contact Discharge								
	Test Levels				Results			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass	Fail	Performance Criterion		
Front						⊠A □B		
Back						⊠A □B		
Left		\boxtimes		\boxtimes		⊠A □B		
Right		\boxtimes		\boxtimes		⊠A □B		
Тор						⊠A □B		
Bottom						□A □B		

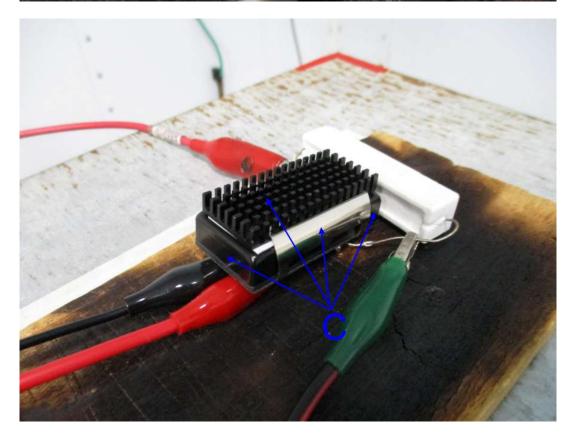
Discharge To Horizontal Coupling Plane								
	Test Levels Results							
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass				
Front						⊠A □B		
Back						⊠A □B		
Left						⊠A □B		
Right						⊠A □B		

Discharge To Vertical Coupling Plane								
	T	est Level	S	Results				
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion		
Front						⊠A □B		
Back				\boxtimes		$oxed{oxed}$ A $oxed{oxed}$ B		
Left		\boxtimes		\boxtimes		⊠A □B		
Right				\boxtimes		⊠A □B		

For Strict Test

Temperature	23°C	Humidity	45% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Pas	ssing Performance		Criterion B


Air Discharge									
	Т	est Level	S			Results			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Criterion					
Front						□А □В			
Back						AB			
Left						AB			
Right						□А □В			
Тор				□ □ □ A □ B					
Bottom						⊠A □B			


	Contact Discharge									
	T	est Level	S			Results				
Test Points	± 2 kV	± 4 kV	± 6 kV	Pass	Pass Fail Performance Criterion					
Front			\boxtimes	\boxtimes		⊠A □B				
Back			\boxtimes	\boxtimes		⊠A □B				
Left						⊠A □B				
Right				\boxtimes		\square A \square B				
Тор			\boxtimes			⊠A □B				
Bottom						□ A □ B				

Discharge To Horizontal Coupling Plane								
	Test Levels Results							
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion		
Front			\boxtimes	\boxtimes		⊠A □B		
Back			\boxtimes	\boxtimes		⊠A □B		
Left			\boxtimes	\boxtimes		$oxed{oxed} {\sf A} oxed{oxed} {\sf B}$		
Right						⊠A □B		

Discharge To Vertical Coupling Plane								
	T	est Level	S	Results				
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass Fail Performance Criterion				
Front			\boxtimes	\boxtimes		⊠A □B		
Back						⊠A □B		
Left						⊠A □B		
Right				\boxtimes		⊠A □B		

The Photo for Discharge Points of EUT

'A' Mark — Air Discharged ; 'C' Mark —Contact Discharged

Model: ERM04A18-HS

Temperature	23°C	Humidity	45% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Pas	ssing Performance		Criterion B

	Air Discharge									
	Т	est Level	S			Results				
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Criterion						
Front						□А □В				
Back						□A □B				
Left						□ A □ B				
Right						□A □B				
Тор						□А □В				
Bottom				\boxtimes		oxtimesA $oxtimes$ B				

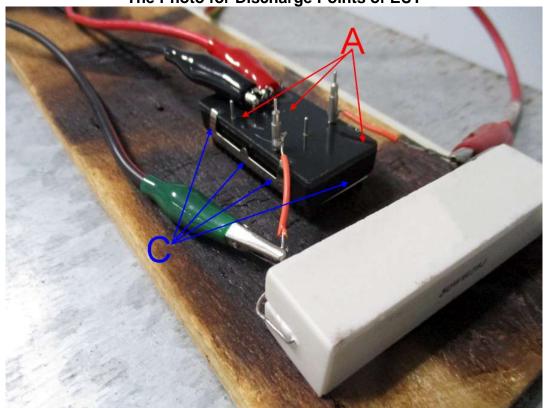
Contact Discharge									
	Т	est Level	S			Results			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Criterion					
Front		\boxtimes				⊠A □B			
Back		\boxtimes		\boxtimes		⊠A □B			
Left		\boxtimes				⊠A □B			
Right		\boxtimes				⊠A □B			
Тор						⊠A □B			
Bottom						□A □B			

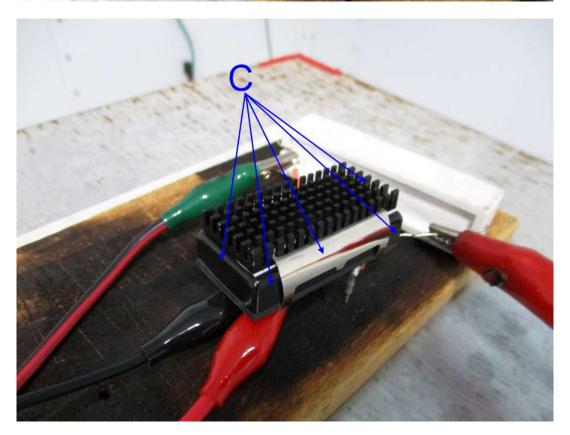
Discharge To Horizontal Coupling Plane									
	T	Test Levels Results							
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass Fail Performance Criterion					
Front				\boxtimes		⊠A □B			
Back				\boxtimes		⊠A □B			
Left						⊠A □B			
Right		\boxtimes		\boxtimes		oxtimesA $oxtimes$ B			

Discharge To Vertical Coupling Plane								
	T	est Level	S			Results		
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass Fail Performance Criterion				
Front						⊠A □B		
Back		\boxtimes		\boxtimes		⊠A □B		
Left				\boxtimes		⊠A □B		
Right				\boxtimes		⊠A □B		

For Strict Test

Temperature	23°C	Humidity	45% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Pas	ssing Performance		Criterion B


Air Discharge									
	Т	est Level	S			Results			
Test Points	± 2 kV	± 4 kV	± 8 kV	Pass Fail Performance Criterion					
Front						□А □В			
Back						AB			
Left						AB			
Right						□А □В			
Тор				□ □ □ A □ B					
Bottom						⊠A □B			


Contact Discharge										
	T	est Level	S			Results				
Test Points	± 2 kV	± 4 kV	± 6 kV	Pass	Fail	Performance Criterion				
Front			\boxtimes	\boxtimes		⊠A □B				
Back			\boxtimes	\boxtimes		⊠A □B				
Left						⊠A □B				
Right			\boxtimes	\boxtimes		$oxed{oxed} {\sf A} oxed{oxed} {\sf B}$				
Тор			\boxtimes	\boxtimes		⊠A □B				
Bottom						AB				

Discharge To Horizontal Coupling Plane									
	T	est Level	S			Results			
Side of EUT	± 2 kV	± 4 kV	± 6 kV	Pass Fail Performance Criterion					
Front			\boxtimes	\boxtimes		⊠A □B			
Back			\boxtimes	\boxtimes		⊠A □B			
Left						⊠A □B			
Right						⊠A □B			

Discharge To Vertical Coupling Plane										
	Test Levels Results									
Side of EUT	± 2 kV			Pass	Fail	Performance Criterion				
Front			\boxtimes	\boxtimes		⊠A □B				
Back						⊠A □B				
Left						⊠A □B				
Right						⊠A □B				

The Photo for Discharge Points of EUT

'A' Mark — Air Discharged ; 'C' Mark —Contact Discharged

8.4. RADIATED, RADIO-FREQUENCY, ELECTROMAGNETIC FIELD (RS)

Reference No.: T160519N02-E1 Report No: T170223N03-E

8.4.1. **TEST SPECIFICATION**

Basic Standard: IEC 61000-4-3

Frequency Range: 80 MHz ~ 1000 MHz

Field Strength: 10 V/m

> 1kHz Sine Wave, 80%, AM Modulation **Modulation:**

1 % of preceding frequency value **Frequency Step:**

Polarity of Antenna: Horizontal and Vertical

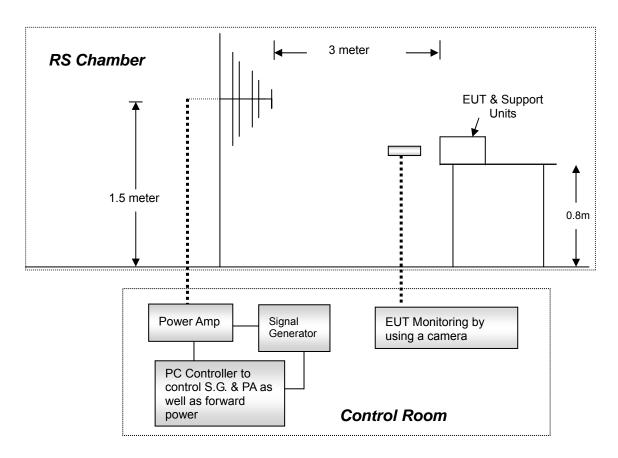
> **Test Distance:** 3 m

Antenna Height: 1.5m

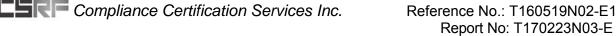
8.4.2. **TEST INSTRUMENT**

	966 RS Chamber										
Name of Equipment	Manufacturer	Manufacturer Model S		Calibration Due							
Amplifier	ar	60S1G3M3 60Watt	310102	N.C.R							
Amplifier	ar	150W1000M3	310037	N.C.R							
Antenna	ar	AT5080	309817	N.C.R							
Digital Signal Generator	HP	ESG-D3000A	US36260655	04/20/2017							
Power SENSOR	Boonton	51011-EMC	33428	04/21/2017							
Power SENSOR	Boonton	51011-EMC	33429	04/21/2017							
RS Power Meter	Boonton	4232A-01-02	122202	04/21/2017							
Software		RS SW1005 R1_4									

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


^{2.} N.C.R. = No Calibration required

8.4.3. **TEST PROCEDURE**


The test procedure was in accordance with IEC 61000-4-3

- a) The testing was performed in a fully anechoic chamber. The transmit antenna was located at a distance of 3 meters from the EUT.
- b) The frequency range is swept from 80 MHz to 1000 MHz, with the signal 80% amplitude modulated with a 1kHz sine-wave. The rate of sweep did not exceed 1.5 x 10⁻³ decade/s, where the frequency range is swept incrementally, the step size was 1% of preceding frequency value.
- c) The dwell time at each frequency shall be not less than the time necessary for the EUT to be able to respond.
- d) The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.

8.4.4. **TEST SETUP**

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

8.4.5. **TEST RESULTS**

Model: ERM02A18-HS

Temperature	24°C	Humidity	46% RH
Pressure	1028mbar	Dwell Time	3 sec.
Tested By	11711/11 (.VII	Required Passing Performance	Criterion A

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result	Observation
80 ~ 1000	V&H	0	3	⊠A □B	PASS	
80 ~ 1000	V&H	90	3	⊠A □B	PASS	
80 ~ 1000	V&H	180	3	⊠A □B	PASS	
80 ~ 1000	V&H	270	3	⊠A □B	PASS	

For Strict Test

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result	Observation
80 ~ 1000	V&H	0	10	⊠A □B	PASS	
80 ~ 1000	V&H	90	10	⊠A □B	PASS	
80 ~ 1000	V&H	180	10	⊠A □B	PASS	
80 ~ 1000	V&H	270	10	⊠A □B	PASS	

Model: ERM04A18-HS

Temperature	24°C	Humidity	46% RH
Pressure	1028mbar	Dwell Time	3 sec.
Tested By	1131//11(.//11	Required Passing Performance	Criterion A

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result	Observation
80 ~ 1000	V&H	0	3	⊠A □B	PASS	
80 ~ 1000	V&H	90	3	⊠A □B	PASS	
80 ~ 1000	V&H	180	3	⊠A □B	PASS	
80 ~ 1000	V&H	270	3	⊠A □B	PASS	

For Strict Test

Frequency (MHz)	Polarity	Azimuth	Field Strength (V/m)	Performance Criterion	Result	Observation
80 ~ 1000	V&H	0	10	⊠A □B	PASS	
80 ~ 1000	V&H	90	10	⊠A □B	PASS	
80 ~ 1000	V&H	180	10	⊠A □B	PASS	
80 ~ 1000	V&H	270	10	⊠A □B	PASS	

8.5. ELECTRICAL FAST TRANSIENT (EFT)

8.5.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-4

Test Voltage: AC Power Port: ---kV

DC Power Port: 2kV

Signal Ports and Telecommunication Ports: ---kV

Polarity: Positive & Negative

Impulse Frequency: 5 kHz

Impulse Wave-shape: 5/50 ns

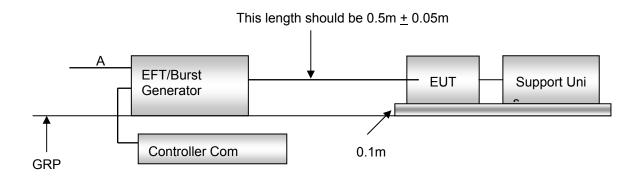
Burst Duration: 15 ms

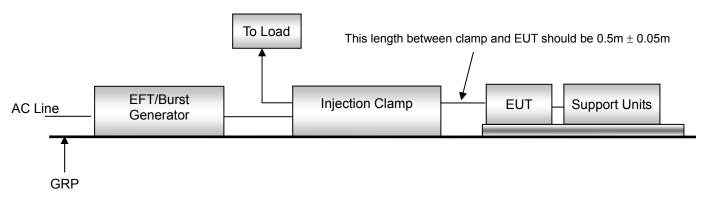
Burst Period: 300 ms

Test Duration: Not less than 1 min.

8.5.2. TEST INSTRUMENT

	Immunity Shield Room										
Name of Equipment	Manufacturer	Manufacturer Model Serial Number Calibration									
Capacitor Clamp	KeyTek	CCL-4	9306412	01/17/2017							
EMS Test System	KeyTek	KeyTek EMCpro 0312231 11/19/2016									
Software		CE Ware 3.00b									


Note:


- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

8.5.3. TEST PROCEDURE

- a) Both positive and negative polarity discharges were applied.
- b) The length of the "hot wire" from the coaxial output of the EFT generator to the terminals on the EUT should not exceed 0.5 meter.
- c) The duration time of each test sequential was 1 minute.
- d) The transient/burst waveform was in accordance with IEC 61000-4-4, 5/50ns.

8.5.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The configuration consisted of a wooden table (0.1m high) standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system. A minimum distance of 0.5m was provided between the EUT and the walls of the laboratory or any other metallic structure.

FLOOR-STANDING EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-4 and its cables, were isolated from the Ground Reference Plane by an insulating support that is 0.1-meter thick. The GRP consisted of a sheet of aluminum (at least 0.25mm thick and 2.5m square) connected to the protective grounding system.

8.5.5. TEST RESULTS

Model: ERM02A18-HS

Temperature	24°C	Humidity	46% RH	
Pressure	1028mbar	Tested By	Taiyu Cyu	
Required P	assing Performance	Criterion B		

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1	+/-	0.5	⊠A □B	PASS	
L2	+/-	0.5	⊠A □B	PASS	
L1 + L2	+/-	0.5	⊠A □B	PASS	

For Strict Test:

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1	+/-	2	⊠A □B	PASS	
L2	+/-	2	⊠A □B	PASS	
L1 + L2	+/-	2	⊠A □B	PASS	

Model: ERM04A18-HS

Temperature	24°C	Humidity	46% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1	+/-	0.5	⊠A □B	PASS	
L2	+/-	0.5	⊠A □B	PASS	
L1 + L2	+/-	0.5	⊠A □B	PASS	

For Strict Test:

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1	+/-	2	⊠A □B	PASS	
L2	+/-	2	⊠A □B	PASS	
L1 + L2	+/-	2	⊠A □B	PASS	

8.6. SURGE IMMUNITY TEST

8.6.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-5

Wave-Shape: Combination Wave

1.2/50 μs Open Circuit Voltage 8/20 μs Short Circuit Current

Test Voltage: AC Power Port~ line to line: ---kV, line to ground: ---kV

DC Power Port~ line to earth: 2kV

Signal and Telecommunication Ports ~ line to ground: --kV

Surge Input/Output: Power Line: L1 - L2

Generator Source Impedance: 2 ohm between networks

12 ohm between network and ground

Polarity: Positive/Negative

Phase Angle: 0° / 90° / 180° / 270°

Pulse Repetition Rate: 1 time / min. (maximum)

Number of Tests: 5 positive and 5 negative at selected points

8.6.2. TEST INSTRUMENT

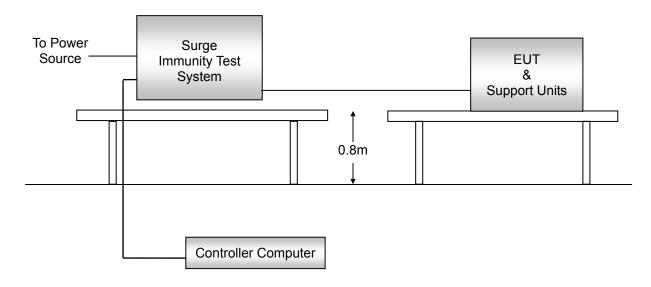
Immunity Shield Room							
Name of Equipment	Manufacturer	Manufacturer Model Serial Number Calibration Due					
CDN	EMC-PAPTNER	CDN-UTP8	CDN-UTP8-1504	11/26/2016			
EMS Test System	KeyTek	KeyTek EMCpro 0312231 11/19/2					
Software	CE Ware 3.00b						

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

8.6.3. TEST PROCEDURE

a) For EUT power supply:


The surge is applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

- b) For test applied to unshielded un-symmetrically operated interconnection lines of EUT:

 The surge was applied to the lines via the capacitive coupling. The coupling / decoupling networks didn't influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.
- c) For test applied to unshielded symmetrically operated interconnection / telecommunication lines of EUT:

The surge was applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor were not specified. The interconnection line between the EUT and the coupling/decoupling networks was shorter than 2 meters in length.

8.6.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

8.6.5. TEST RESULTS

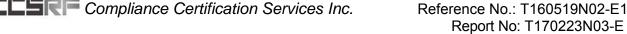
Model: ERM02A18-HS

Temperature	24°C	Humidity	45% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1 - L2	+/-	0.5	⊠A □B	PASS	

For Strict Test:

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1 - L2	+/-	2	⊠A □B	PASS	


Model: ERM04A18-HS

Temperature	24°C	Humidity	45% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion B	

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1 - L2	+/-	0.5	⊠A □B	PASS	

For Strict Test:

Test Point	Polarity	Test Level (kV)	Performance Criterion	Result	Observation
L1 - L2	+/-	2	⊠A □B	PASS	

8.7. CONDUCTED RADIO FREQUENCY DISTURBANCES (CS)

8.7.1. **TEST SPECIFICATION**

Basic Standard: IEC 61000-4-6

Frequency Range: 0.15 MHz ~ 80 MHz

Field Strength: 10Vrms

> **Modulation:** 1kHz Sine Wave, 80%, AM Modulation

Frequency Step: 1 % of preceding frequency value

Coupling device: CDN-M2 (2 wires)

8.7.2. **TEST INSTRUMENT**

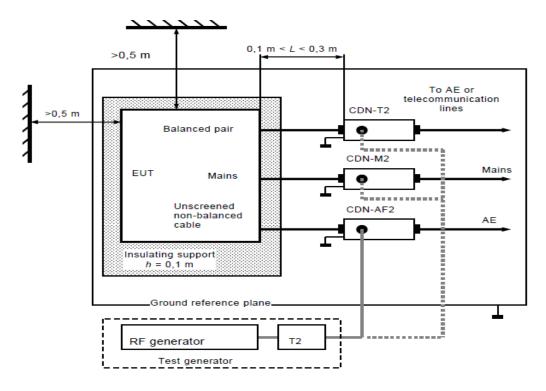
CS Test Site (IEC/EN 61000-4-6)						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
6dB Attenuator	BIRD	75-A-FFN-06	0346	N.C.R		
CDN	Frankonia	CDN M2+M3	A3011095	12/06/2016		
Conduction Immunity	Frankonia	CIT-10/75	102C3220	04/26/2017		
Couplihd/Decoupling Networks	FRANKONIA	CDN-RJ45	A3100030/2013	04/27/2017		
EM Injection Clamp	FCC	F-203I-23MM	449	05/03/2017		
Software	CS-EN61000-4-6					

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

8.7.3. TEST PROCEDURE

The EUT shall be tested within its intended operating and climatic conditions.


The test shell performed with the test generator connected to each of the coupling and decoupling devices in turn, while the other non-excited RF input ports of the coupling devices are terminated by a 50-ohm load resistor.

The frequency range was swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal was modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. The sweep rate was 1.5×10^{-3} decades/s. Where the frequency range is swept incrementally, the step size was 1 % of preceding frequency value from 150 kHz to 80 MHz.

The dwell time at each frequency was less than the time necessary for the EUT to be exercised, and able to respond. Sensitive frequencies such as clock frequency(ies) and harmonics or frequencies of dominant interest, was analyzed separately.

Attempts were made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

8.7.4. TEST SETUP

Note:

- 1. The EUT is setup 0.1m above Ground Reference Plane
- 2. The CDNs and / or EM clamp used for real test depend on ports and cables configuration of EUT.

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP AND FLOOR-STANDING EQUIPMENT

The equipment to be tested is placed on an insulating support of 0.1 meters height above a ground reference plane. All relevant cables shall be provided with the appropriate coupling and decoupling devices at a distance between 0.1 meters and 0.3 meters from the projected geometry of the EUT on the ground reference plane.

8.7.5. TEST RESULTS

Model: ERM02A18-HS

Temperature	24°C	Humidity	44% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion A	

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method		mance erion	Result	Observation
0.15 ~ 80	3	DC Power	CDN-M2	⊠A	□В	PASS	

For Strict Test:

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method	Perfor Crite		Result	Observation
0.15 ~ 80	10	DC Power	CDN-M2	⊠A	□в	PASS	

Model: ERM04A18-HS

Temperature	24°C	Humidity	44% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion A	

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method		mance erion	Result	Observation
0.15 ~ 80	3	DC Power	CDN-M2	⊠A	□в	PASS	

For Strict Test:

Frequency Band (MHz)	Field Strength (Vrms)	Cable	Injection Method		mance erion	Result	Observation
0.15 ~ 80	10	DC Power	CDN-M2	⊠A	□В	PASS	

ration Services Inc. Reference No.: T160519N02-E1
Report No: T170223N03-E

8.8. POWER FREQUENCY MAGNETIC FIELD

8.8.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-8

Frequency Range: 50Hz

Field Strength: 100 A/m

Observation Time: 1 minute

Inductance Coil: Rectangular type, 1mx1m

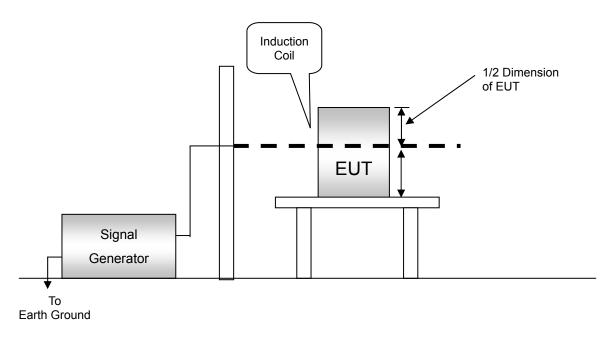
8.8.2. TEST INSTRUMENT

Tainan Lab.

Immunity Shield Room						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
AC/DC CLAMP METER	PROVA	2003	2190104	01/27/2017		
Magnetic generator	Schaffner	MFO 6501	154	N.C.R		
Magnetic loops	Schaffner	INA 702	158	N.C.R		

Xindian Lab.

Immunity Shield Room						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
AC/DC Clamp Meter	Fluke	353	33360025	07/06/2017		
Magnetic Field Coil	Teseq	INA 703 W/2141	1976/1413	04/21/2017		
Magnetic Field Meter	Sypris	4080	0247	04/24/2017		
5kVA Power Source	Teseq	5001IX-208-TSQ	1207A03643	N.C.R		
Software	Win2120Ver. 5.0					


Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration required

8.8.3. TEST PROCEDURE

- a) The equipment is configured and connected to satisfy its functional requirements. It shall be placed on the GRP with the interposition of a 0.1m-thick insulating support.
- b) The equipment cabinets shall be connected to the safety earth directly on the GRP via the earth terminal of the EUT.
- c) The power supply, input and output circuits shall be connected to the sources of power supply, control and signal.
- d) The cables supplied or recommended by the equipment manufacturer shall be used. 1 meter of all cables used shall be exposed to the magnetic field.

8.8.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

Note:

TABLETOP EQUIPMENT

The equipment shall be subjected to the test magnetic field by using the induction coil of standard dimension (1 m x 1 m). The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

FLOOR-STANDING EQUIPMENT

The equipment shall be subjected to the test magnetic field by using induction coils of suitable dimensions. The test shall be repeated by moving and shifting the induction coils, in order to test the whole volume of the EUT for each orthogonal direction. The test shall be repeated with the coil shifted to different positions along the side of the EUT, in steps corresponding to 50 % of the shortest side of the coil. The induction coil shall then be rotated by 90 degrees in order to expose the EUT to the test field with different orientations.

8.8.5. TEST RESULTS

Tainan Lab.

Model: ERM02A18-HS

Temperature	24°C	Humidity	46% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion A	

DIRECTION	Field Strength (A/m)	Performance Criterion	Result	Observation
X	1	⊠A □B	PASS	
Y	1	⊠A □B	PASS	
Z	1	⊠A □B	PASS	

For Strict Test:

Xindian Lab.

Temperature	19°C	Humidity	55% RH
Pressure	1007	Tested By	PIPO
Required Passing Performance		Criterion A	

DIRECTION	Field Strength (A/m)	Performance Criterion	Result	Observation
X	100	⊠A □B	PASS	
Υ	100	⊠A □B	PASS	
Z	100	⊠A □B	PASS	

Tainan Lab.

Model: ERM04A18-HS

Temperature	24°C	Humidity	46% RH
Pressure	1028mbar	Tested By	Taiyu Cyu
Required Passing Performance		Criterion A	

DIRECTION	Field Strength (A/m)	Performance Criterion	Result	Observation
Χ	1	⊠A □B	PASS	
Υ	1	⊠A □B	PASS	
Z	1	⊠A □B	PASS	

For Strict Test:

Xindian Lab.

Temperature	19°C	Humidity	55% RH
Pressure	1007	Tested By	PIPO
Required Passing Performance		Criterion A	

DIRECTION	Field Strength (A/m)	Performance Criterion	Result	Observation
X	100	⊠A □B	PASS	
Υ	100	⊠A □B	PASS	
Z	100	⊠A □B	PASS	

8.9. VOLTAGE DIPS & VOLTAGE INTERRUPTIONS

8.9.1. TEST SPECIFICATION

Basic Standard: IEC 61000-4-11

Test duration time: Minimum three test events in sequence

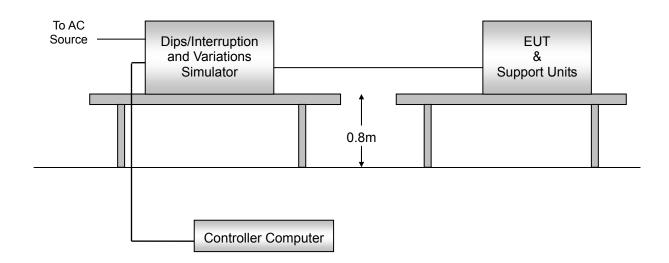
Interval between event: Minimum 10 seconds

Phase Angle: 0° / 45° / 90° / 135° / 180° / 225° / 270° / 315° / 360°

Test cycle: 3 times

8.9.2. TEST INSTRUMENT

Immunity shielded room					
Name of Equipment Manufacturer Model Serial Number Calibration Du					
EMS Test System	KeyTek	EMCpro	0312231	11/19/2016	
Software	CE Ware 3.00b				


Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. N.C.R.= No Calibration Required.

8.9.3. TEST PROCEDURE

- a) The EUT and support units were located on a wooden table, 0.8 m away from ground floor.
- b) Setting the parameter of tests and then perform the test software of test simulator.
- c) Conditions changes to occur at 0 degree crossover point of the voltage waveform.
- d) Recording the test result in test record form.

8.9.4. TEST SETUP

For the actual test configuration, please refer to the related item - Photographs of the Test Configuration.

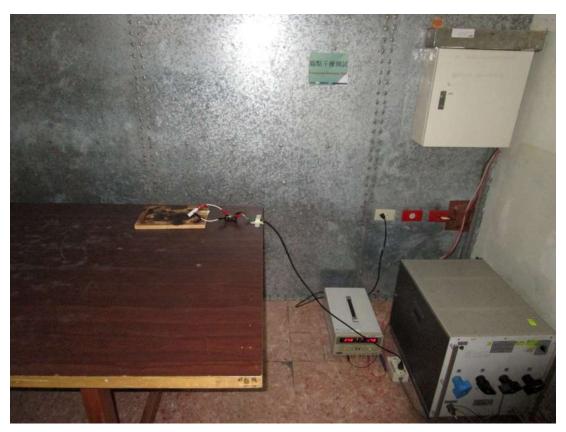
8.9.5. TEST RESULTS

* This EUT is not connected to AC Source directly. Not applicable for this test.

Temperature	°C	Humidity	% RH
Pressure	mbar	Tested by	
	Criterion B: >95% reduction 0.5 periods Criterion C: 30% reduction 25 periods & >95% reduction 250 period		5% reduction 250 periods

Test Power: 230Vac, 50Hz					
Voltage (% Reduction)	Duration (Period)	Performance Criterion	Result	Observation	
>95		□A □B □C			
30		□A □B □C			
>95		□A □B □C			

9 PHOTOGRAPHS OF THE TEST CONFIGURATION


CONDUCTED EMISSION TEST (Model: ERM00CC18-HS)

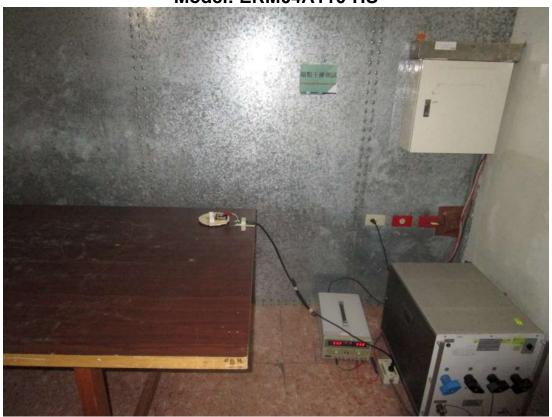
Model: ERM02A18-HS

Model: ERM00CC110-HS

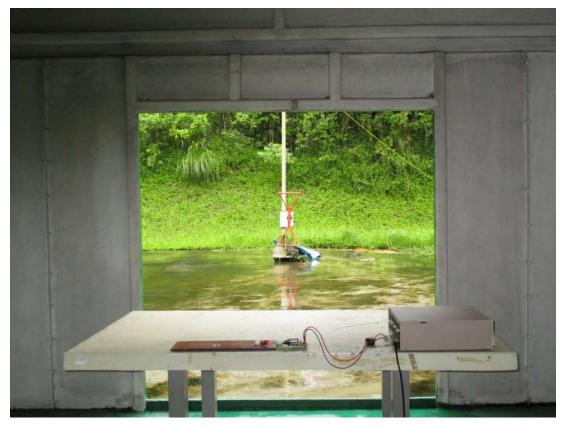
Model: ERM02A110-HS

Model: ERM01CC18-HS

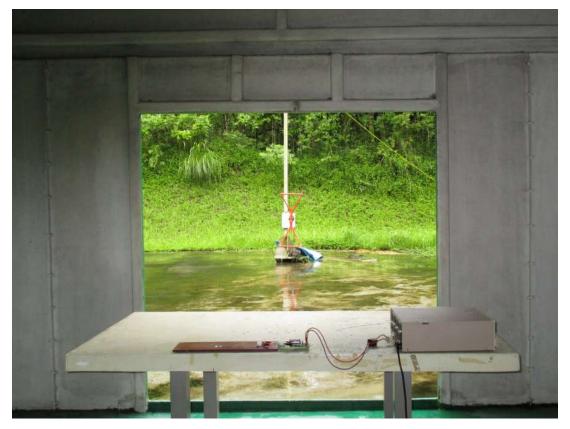
Model: ERM04A18-HS



RADIATED EMISSION TEST (Model: ERM00CC18-HS)



Model: ERM02A18-HS



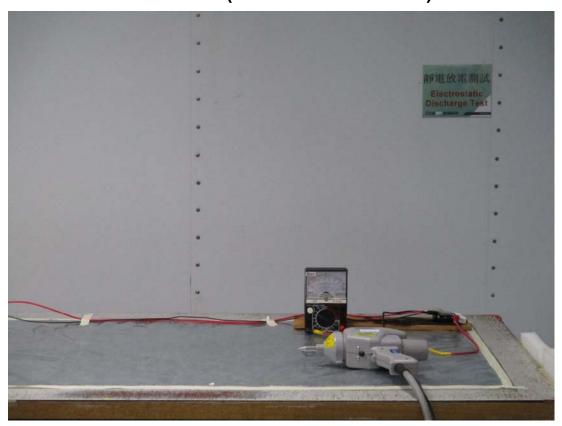
Model: ERM00CC110-HS

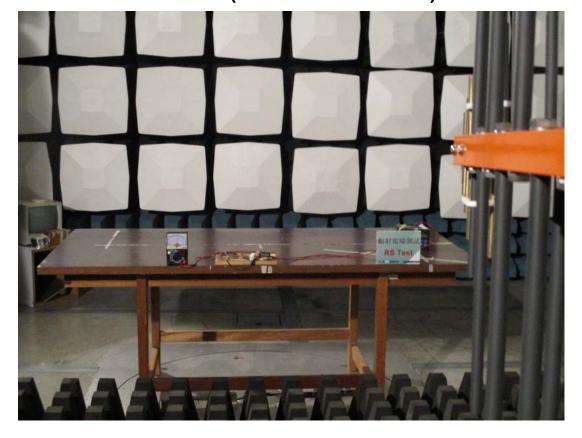
Model: ERM02A110-HS

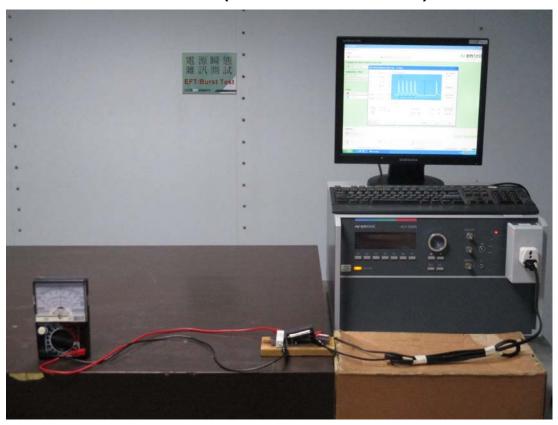
Model: ERM01CC18-HS

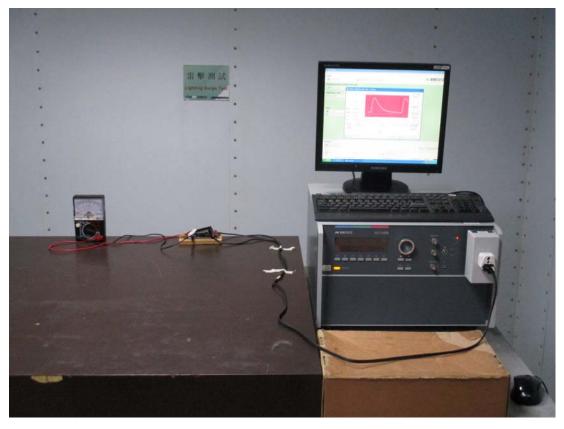
Model: ERM04A18-HS

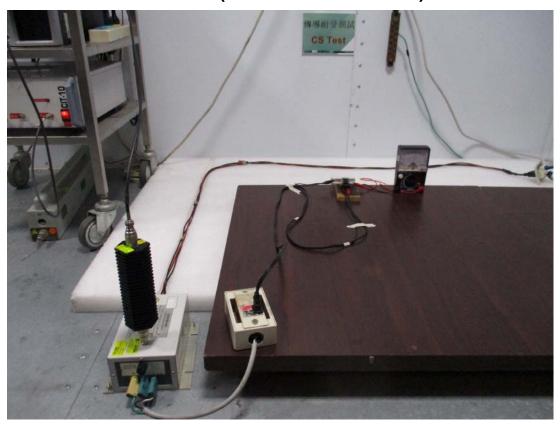
Model: ERM01CC110-HS

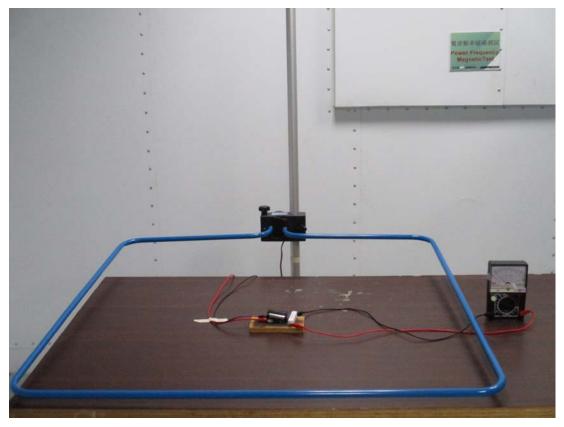

Model: ERM04A110-HS



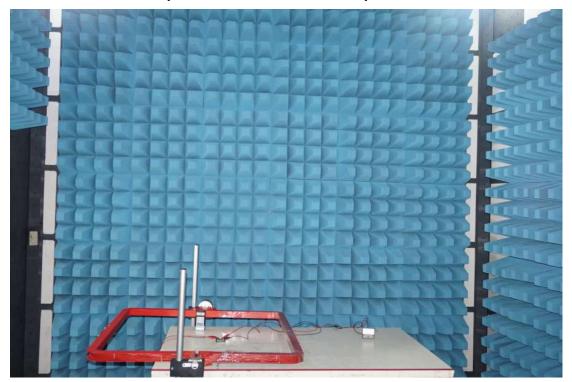

ESD TEST (Model: ERM02A18-HS)


RS TEST (Model: ERM02A18-HS)


EFT TEST (Model: ERM02A18-HS)


SURGE TEST (Model: ERM02A18-HS)

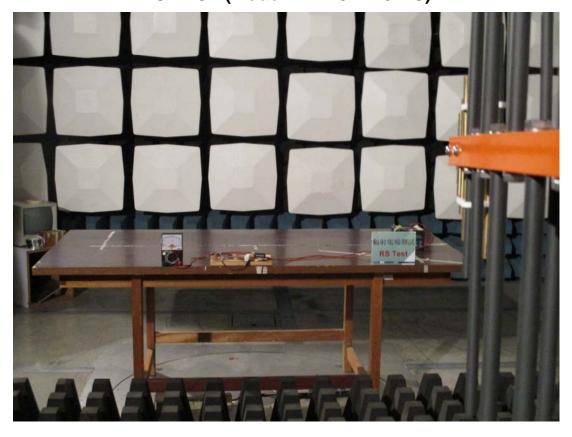
CS TEST (Model: ERM02A18-HS)

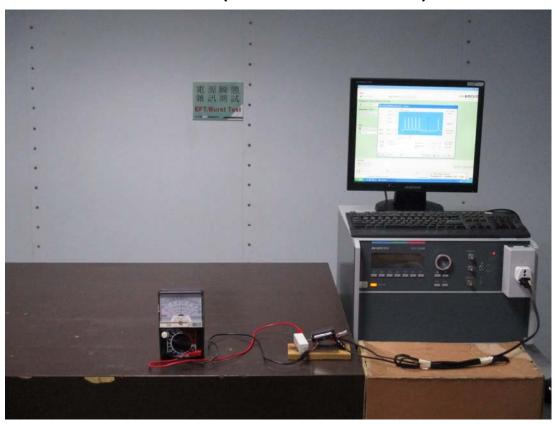


PFMF TEST (Model: ERM02A18-HS)

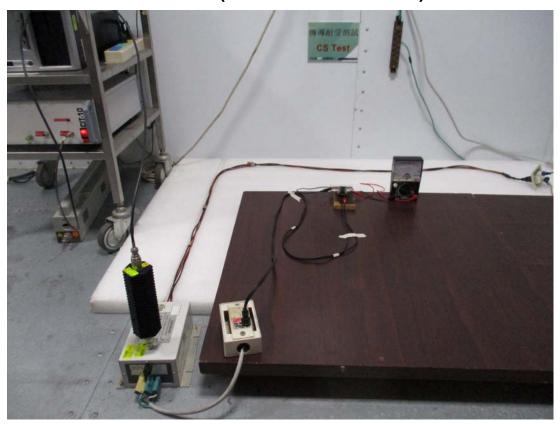


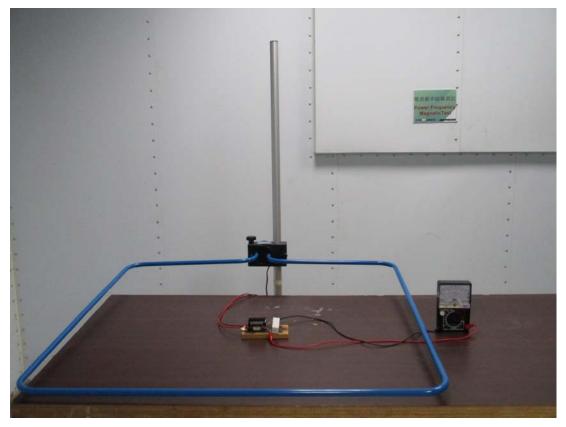
PFMF TEST (Model: ERM02A18-HS) for Xindian Lab.




ESD TEST (Model: ERM04A18-HS)

RS TEST (Model: ERM04A18-HS)


EFT TEST (Model: ERM04A18-HS)


SURGE TEST (Model: ERM04A18-HS)

CS TEST (Model: ERM04A18-HS)

PFMF TEST (Model: ERM04A18-HS)

PFMF TEST (Model: ERM04A18-HS-HS) for Xindian Lab.

